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ABSTRACT
Offline-to-online reinforcement learning combines the advantages
of offline data utilization with online exploration to enhance sample
efficiency and performance. A primary challenge lies in managing
the distribution shift between offline and online data, which sig-
nificantly impacts training effectiveness. Existing methods often
employ fixed mixing ratios for data replay, but these require task-
specific tuning and may fail to generalize across different environ-
ments. To address this, we introduce a metric that evaluates policy
quality relative to offline and online data, and propose a bandit-
based strategy to adjust the mixing ratio adaptively, optimizing
policy quality during training. Experiments across diverse environ-
ments demonstrate that our approach outperforms static methods,
offering robust adaptability and minimizing manual tuning.
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1 INTRODUCTION
Reinforcement learning (RL) has achieved remarkable success in do-
mains such as strategic gameplay, robotic control, and autonomous
navigation [1, 8, 9]. However, its application in real-world scenarios
is hindered by sample inefficiency, requiring extensive and often
costly interactions with the environment [5, 6]. This limitation is
particularly critical in sensitive applications like healthcare and
autonomous driving [13, 14].

The offline-to-online RL paradigm addresses these challenges by
combining offline pretraining with online fine-tuning, leveraging
static datasets for robust initialization and dynamic interactions
for policy adaptation [4, 12]. While promising, this transition is
complicated by distribution shifts between offline and online data,
which affect the agent’s ability to integrate learned behaviors ef-
fectively [3, 7]. Common solutions include replaying offline data
during online training using fixed mixing ratios or more balanced
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schemes, but these methods often require extensive task-specific
tuning [9, 11].

Our empirical studies reveal that no single mixing ratio univer-
sally optimizes performance across tasks and datasets. Instead, the
optimal data replay strategy depends on task-specific factors such
as offline data quality and policy performance. For instance, higher
reliance on offline data benefits high-quality datasets, while pri-
oritizing online exploration can improve performance when the
agent’s policy surpasses the offline dataset.

To address these challenges, we propose the Reinforcement
Learning with Optimized Adaptive Data-mixing (ROAD) frame-
work. ROAD dynamically adjusts the mixing ratio during training
using a metric that quantifies the agent’s policy quality relative
to both offline and online data. This metric is derived from the
agent’s state-action value function, allowing for adaptive replay
through a bandit-based mechanism that balances exploration and
exploitation. ROAD minimizes empirical tuning, enhances learning
efficiency, and is theoretically robust with cumulative suboptimality
guarantees.

2 ROAD: ADAPTIVE OFFLINE DATA REPLAY
FOR OFFLINE-TO-ONLINE RL

We introduce Reinforcement learning with Optimized Adaptive
Data-mixing (ROAD), a framework for adaptively replaying offline
data in offline-to-online reinforcement learning (RL). ROAD dy-
namically adjusts the mixing ratio of offline and online data based
on a metric quantifying the agent’s policy quality relative to these
two sources, enhancing learning efficiency and minimizing man-
ual tuning. ROAD is algorithm-agnostic and integrates seamlessly
with value-based RL methods. ROAD quantifies the relative policy
quality using the following metric:

𝑅𝑞 =E𝑠,𝑎∼Doffline [𝑄𝜙 (𝑠, 𝑎)] − E𝑠,𝑎∼Doffline [𝑄𝜙 (𝑠, 𝑎)]︸                                                       ︷︷                                                       ︸
Offline Policy Quality

− E𝑠,𝑎∼Donline [𝑄𝜙 (𝑠, 𝑎)] − E𝑠,𝑎∼Donline [𝑄𝜙 (𝑠, 𝑎)]︸                                                       ︷︷                                                       ︸
Online Policy Quality

(1)

where 𝑅𝑞 measures the policy’s effectiveness relative to offline and
online data. ROAD dynamically adjusts the offline-to-online data
mixing ratio𝑚 by optimizing 𝑅𝑞 using a bandit-based mechanism
with Upper Confidence Bound (UCB) exploration. This ensures an
adaptive balance between leveraging high-quality offline data and
exploring dynamic online environments.

ROAD maintains a value estimate 𝑅𝑞,𝑚 for each ratio𝑚, calcu-
lated as the average observed 𝑅𝑞 values, and selects the next ratio
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Table 1: Performance of ROAD and the baseline methods for offline data replay under Antmaze tasks, Locomotion tasks and
Kitchen tasks. The best performance for fixed mixing ratios is underlined, and the best-performed score is bolded.

Fixed Mixing Ratios

Tasks 0.0 0.1 0.2 0.3 0.4 0.5 Uniform Decreasing BR ROAD

antmaze-large-diverse 56.98±3.33 60.32±4.08 55.98±2.26 56.01±2.29 50.66±3.79 50.35±0.86 60.83±4.76 52.15±0.25 46.83±6.74 63.13±2.24
antmaze-large-play 58.16±2.63 46.51±1.63 53.16±5.70 53.66±0.61 46.82±2.02 55.12±3.63 46.32±9.76 52.17±1.28 38.34±1.24 59.75±2.97
antmaze-medium-diverse 80.00±4.55 78.68±4.48 80.50±5.00 81.66±2.01 82.67±1.85 83.29±3.71 82.30±2.01 81.82±2.52 81.84±0.75 83.67±1.39
antmaze-medium-play 82.50±3.11 79.17±2.40 77.32±1.92 80.16±1.66 82.00±2.95 78.62±3.53 82.67±0.26 77.16±3.02 80.99±0.99 83.49±3.62
antmaze-umaze-diverse 63.49±13.79 69.66±15.78 7.83±2.24 38.50±33.15 46.51±21.76 16.13±8.51 25.65±10.24 48.82±23.49 80.66±3.99 72.12±23.29
antmaze-umaze 92.16±0.94 93.32±0.96 93.16±0.85 93.34±1.32 94.33±0.47 94.37±0.24 91.32±1.76 92.99±0.50 94.33±0.75 95.83±0.30

halfcheetah-random 41.48±2.21 43.50±6.28 48.25±3.30 39.62±3.10 43.71±6.07 44.39±4.37 45.91±0.06 42.72±0.22 47.43±1.12 49.37±3.57
halfcheetah-medium-replay 50.70±3.38 54.54±1.81 52.55±1.72 51.55±1.90 50.11±1.14 47.41±0.34 50.07±0.05 53.55±3.13 49.28±2.29 55.82±1.07
halfcheetah-medium 69.61±1.58 73.53±1.74 72.23±1.72 69.47±4.25 69.39±2.61 67.87±1.08 67.56±4.61 70.46±0.30 72.49±1.51 74.57±1.95
halfcheetah-medium-expert 63.75±5.65 92.75±1.40 92.45±1.48 94.52±1.13 93.07±1.16 91.54±5.56 92.83±1.18 93.88±1.70 93.34±2.33 95.06±0.55
halfcheetah-expert 78.28±3.58 94.17±1.65 94.64±0.66 95.65±0.36 95.94±0.47 96.61±0.45 93.83±1.76 93.15±0.32 94.91±0.77 96.86±0.39

walker2d-random 6.57±1.50 8.72±2.36 8.13±0.38 10.00±1.52 9.20±1.08 10.65±1.66 8.58±0.31 9.56±1.00 7.58±0.86 12.43±0.69
walker2d-medium-replay 46.55±24.38 34.56±7.61 34.94±3.47 63.26±13.31 43.33±9.41 40.98±20.32 57.70±15.01 39.16±2.18 70.26±7.95 78.15±15.74
walker2d-medium 50.28±7.17 59.07±14.22 56.72±9.78 44.59±9.07 55.74±16.19 31.52±8.42 39.78±1.67 64.30±10.13 40.11±19.46 60.17±8.51
walker2d-medium-expert 79.40±11.42 76.15±13.66 68.21±6.43 73.54±11.20 62.06±28.48 60.48±4.65 59.12±22.35 82.93±7.30 81.88±6.36 83.60±13.06
walker2d-expert 86.02±12.41 89.75±10.80 41.59±23.56 56.49±18.25 73.62±9.23 58.19±9.67 52.01±8.22 74.28±6.07 79.64±2.37 88.06±2.09

hopper-random 17.43±10.05 18.54±6.79 19.71±2.87 12.82±3.29 13.51±5.57 15.51±5.41 13.77±3.61 19.80±1.37 21.48±2.84 31.77±4.44
hopper-medium-replay 54.46±29.79 80.14±25.89 67.24±13.88 71.00±25.77 67.35±9.05 77.74±29.92 97.93±13.56 77.12±9.42 88.27±24.20 99.14±9.97
hopper-medium 87.25±19.06 81.84±29.83 61.15±18.09 77.46±18.12 87.85±7.86 73.30±22.99 86.17±2.53 85.37±13.13 88.56±20.03 99.23±1.05
hopper-medium-expert 46.63±4.13 49.86±8.83 47.01±12.77 75.97±29.32 57.68±12.16 73.46±22.75 66.02±23.94 61.76±4.93 66.21±4.65 94.08±16.78
hopper-expert 71.28±24.84 72.74±12.96 62.33±14.68 57.80±3.67 52.69±10.61 54.07±1.54 50.81±5.70 58.80±4.32 39.62±5.91 85.10±4.27

kitchen-partial 4.16±13.27 38.17±11.61 39.55±4.71 23.76±9.43 18.74±14.94 41.87±18.71 22.04±0.00 32.93±28.74 29.99±29.37 42.65±5.13
kitchen-mixed 0.41±0.59 44.34±1.58 45.44±8.12 40.02±7.12 39.14±15.11 45.00±9.17 55.83±11.90 29.58±13.81 47.56±0.64 56.62±6.18
kitchen-complete 10.04±1.56 51.65±10.22 52.07±6.64 47.08±12.38 19.59±24.76 41.86±11.94 53.75±13.69 21.65±16.24 41.64±27.49 66.25±17.63

Average 54.07 62.15 57.28 58.66 56.49 56.26 58.45 59.00 61.80 71.95

𝑚𝑡 as:

𝑚𝑡 = arg max
𝑚′

𝑅𝑞,𝑚′ +

√︄
𝑐 log (𝑡 ∧ 𝜏)
𝑁𝑡 (𝜏,𝑚′)

 , (2)

where 𝑁𝑡 (𝜏,𝑚′) tracks the selection count for𝑚′ within a sliding
window 𝜏 , and 𝑐 controls exploration. ROAD adaptively samples
batches with 𝑚 × 100% offline and (1 − 𝑚) × 100% online data
for gradient updates, dynamically optimizing the mixing ratio for
changing task demands. ROAD is compatible with standard offline-
to-online RL pipelines, where the agent is pretrained using offline
data Doffline and fine-tuned through interactions with the environ-
ment, generating online data Donline. ROAD evaluates 𝑅𝑞 , updates
UCB estimates, and adjusts𝑚 at the end of each episode, ensuring
effective replay patterns.

3 EXPERIMENTS
We evaluate ROAD’s effectiveness in offline-to-online RL through
diverse benchmarks, including AntMaze, MuJoCo Locomotion, and
FrankaKitchen tasks. In AntMaze [2], an ant robot navigates mazes
to reach predefined goals, with rewards assigned as +1 for suc-
cess and 0 otherwise. The MuJoCo Locomotion tasks [10], such
as HalfCheetah, Walker2D, and Hopper, simulate dynamic robotic
movements under varying offline data qualities, ranging from ran-
dom to expert. FrankaKitchen tasks [9] involve controlling a robotic
arm to complete sub-tasks in a kitchen environment, rewarding
agents for successful task execution. To benchmark ROAD, we com-
pare it with fixed-ratio strategies, which statically mix offline and
online data, and decreasing-ratio methods, which linearly reduce
the offline ratio from 50% to 10%. Additionally, we test uniform
sampling of ratios from M and a balanced replay approach that
samples based on density ratio estimates [7]. These baselines repre-
sent common strategies for integrating offline data during online

training, but often require manual tuning to adapt to specific tasks
and datasets.

ROAD consistently outperforms baselines across a variety of
tasks and environments. Table 1 highlights the variability of fixed-
ratio strategies, which perform well in some settings but fail in
others. Decreasing and uniform sampling improve robustness but
cannot consistently match the best fixed ratio. Balanced replay
occasionally surpasses fixed strategies but lacks generalizability. In
contrast, ROAD dynamically adjusts the mixing ratio, achieving
robust and adaptive performance across tasks and data qualities.

4 CONCLUSIONS AND FUTUREWORK
We presented ROAD, an adaptive data replay strategy for offline-to-
online RL that dynamically adjusts mixing ratios based on policy
quality relative to offline and online data. ROAD leverages a bandit-
based mechanism to optimize data utilization, reducing manual
tuning and enhancing adaptability across diverse tasks, datasets,
and algorithms. Experimental results demonstrate ROAD’s robust-
ness and effectiveness in improving learning outcomes through
dynamic replay patterns.

Despite its strengths, ROAD has limitations. The selection of mix-
ing ratios is restricted to a predefined setM, which, while effective,
limits flexibility. Future work could explore more dynamic selection
strategies or advanced bandit algorithms to enhance adaptability.
Additionally, ROAD’s reliance on the quality of offline data high-
lights a potential risk: poor or misleading data could negatively
impact performance. Addressing this issue through data quality
assessment or robust policy evaluation techniques could further
improve ROAD’s reliability in real-world applications.
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