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ABSTRACT
Distribution shift is a major obstacle in offline reinforcement learn-
ing (RL). While existing conservative offline RL algorithms perform
well in learning in-distribution policies, they often fail to generalize
to unseen actions. To address this issue, we propose leveraging
knowledge derived from the gradient fields of the dataset’s density
to refine and adjust the original actions. Building on this, we intro-
duce the Conservative Denoising Score-based Algorithm (CDSA),
which utilizes score-based diffusion models to estimate the gradi-
ents of the dataset density and generates action correction subcom-
ponents to refine the actions. This approach enables more accurate
and efficient decision-making during the testing phase in Markov
Decision Process (MDP) environments. By decoupling conservatism
constraints from the policy, our method is broadly applicable to
various offline RL algorithms. Experiments demonstrate that our
approach significantly enhances baseline performance on D4RL
datasets and exhibits plug-and-play compatibility with different
pre-trained offline RL policies.
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1 INTRODUCTION
Offline RL algorithms [5, 13–15, 18, 25] are prone to producing
inaccurate predictions and catastrophic action commands when
queried outside of the distribution of the training data, which
leads to catastrophic outcomes. To strike a suitable trade-off be-
tween learning an improved policy and minimizing the divergence
from the behavior policy, aiming to avoid errors due to distribu-
tion shift, previous work has provided various perspectives, in-
cluding constraining the system in the training dataset distribu-
tion [5, 11, 13], developing a distributional critic to leverage risk-
averse measures [16, 22], and reconstructing the density function of
the training dataset [5, 6, 11, 17, 19]. However, most previous con-
servative offline RL algorithms failed to fully disentangle the knowl-
edge related to conservatism from the algorithm’s training process.
This knowledge is typically incorporated into functions such as the
final policy or critics, rendering it inseparable from other subcom-
ponents. we explore the possibility of learning conservatism-related
knowledge exclusively from the training dataset to obtain a plug-
and-play decision adjuster. One intuitive approach is to leverage
the density distribution of each dataset to guide the agent towards
states located in areas of high density as much as possible. This
can be achieved by adjusting the actions within the dataset to steer
transitions towards states with higher density.

Inspired by the recent success of diffusionmodels [7–9, 20, 21, 23]
and their applications in reinforcement learning (RL), we intro-
duce the Conservative Denoising Score-based Algorithm (CDSA),
a method designed to refine actions during testing without alter-
ing the training process of the original offline RL algorithm (as
illustrated in Figure 1). CDSA modifies generated actions in a way
that minimally disrupts the original decision-making, avoiding the
need for subjective human input or rigid constraints that could
limit the algorithm’s adaptability. To mitigate the negative impacts
of network uncertainty, we employ a strategy of performing only
a single inference step with the inverse dynamics model at each
timestep, effectively reducing potential errors. Experimental results
show that CDSA consistently improves the performance of various
offline RL baseline algorithms and can be seamlessly integrated
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without requiring fine-tuning or additional conservatism-related
training.

Figure 1: CDSA generates action subcomponents, utilizing
conservatism-related knowledge acquired from the train-
ing dataset, to be added to the action generated from a pre-
trained policy 𝜋 .

2 METHODOLOGY
In this section, we provide the implementation details of our pro-
posed method, CDSA (Conservative Denoising Score-based Algo-
rithm).

Learning the Gradient Field from Dataset. The core idea of our
CDSA is to align agent behavior with high-density regions of the
dataset’s state-action distribution, 𝑝data (𝑠, 𝑎). Inspired by score
matching, we approximate the gradient fields ∇(𝑠,𝑎) log 𝑝data (𝑠, 𝑎)
to identify directions that increase trajectory likelihood. Two in-
dependent score-based diffusion models are trained to separately
estimate gradients for actions and states, avoiding dependency
challenges between 𝑠 and 𝑎.

Action and State Gradients. For action correction, a score-based
diffusion model 𝑔𝜃 (𝑠, 𝑎) is trained to approximate ∇𝑎 log𝑝data (𝑠, 𝑎).
Using denoising score matching, we perturb state-action pairs
with Gaussian noise and optimize 𝑔𝜃 to predict the score of per-
turbed data. Similarly, a score-based diffusion model ℎ𝜑 (𝑠, 𝑎) learns
∇𝑠 log𝑝data (𝑠, 𝑎) by perturbing states while keeping actions fixed.
Both networks minimize losses that enforce alignment with the
true score, enabling reliable gradient estimation.

Inverse Dynamics Model. To translate state gradients into action-
able corrections, we introduce an inverse dynamics model 𝐼𝜙 (𝑠, 𝑠).
This network predicts the action required to transition from state 𝑠
to a target state 𝑠 = 𝑠 + ℎ𝜑 (𝑠, 𝑎), which is guided by the state gradi-
ent. Trained via imitation learning on the dataset, 𝐼𝜙 ensures that
state-based adjustments remain feasible within the environment
dynamics.

Integration for Action Correction. During policy execution, the
original action 𝑎𝑜 from a baseline RL algorithm is adjusted using
the learned gradients: 𝑎1 = 𝑔𝜃 (𝑠, 𝑎𝑜 ) directly modifies the action,
while 𝑎2 = 𝐼𝜙 (𝑠, 𝑠 + ℎ𝜑 (𝑠, 𝑎𝑜 )) incorporates state-driven guidance.
The final action 𝑎 combines these terms linearly with hyperparam-
eters 𝐾1, 𝐾2: 𝑎 = 𝑎𝑜 + 𝐾1 ∗ 𝑎1, +𝐾2 ∗ 𝑎2. This iterative correction
process enhances conservatism without requiring additional critics
or actors.

By unifying gradient estimation with inverse dynamics, CDSA
provides a lightweight yet effective mechanism for offline RL, en-
suring actions remain within dataset-supported regions.

3 EXPERIMENTS
We evaluate CDSA on D4RL benchmarks [3], including MuJoCo
(Hopper, HalfCheetah, Walker2d) with datasets of varying quality
(random, medium, expert) and AntMaze (umaze, medium, large)
for navigation tasks. Baselines include IQL [10], POR [24], and
established methods such as One-step [1], 10%BC [2], TD3+BC [4],
CQL [12], and CODAC [16]. We train IQL and POR for 1M steps
and integrate CDSA with their pretrained policies, fine-tuning its
gradient models for 10K steps.

The results are summarized in Figure 2. CDSA consistently im-
proves baseline performance. On MuJoCo, it achieves significant
gains by stabilizing actions to avoid unsafe states. For AntMaze,
CDSA boosts success rates by up to 40.5%, particularly excelling
in simpler mazes where distribution alignment is critical. The
method’s single-step inverse dynamics inference minimizes error
propagation, and its compatibility with diverse baselines (IQL/POR)
highlights versatility without requiring additional training. Results
validate CDSA’s ability to enhance conservatism while maintaining
algorithmic flexibility.

MuJoCo AntMaze
0

20

40

60

80
No

rm
al

ize
d 

Sc
or

e

One-step
10%BC

TD3+BC
CQL

CODAC
IQL

POR
CDSA (IQL)

CDSA (POR)

Figure 2: Average normalized scores of algorithms for Mu-
JoCo and AntMaze. The scores are taken over the final 20
evaluations for MuJoCo and 100 evaluations for AntMaze.

4 CONCLUSION
Our work introduces the CDSA algorithm, which learns gradient
fields from data and utilizes them to acquire action subcomponents.
Action adjusted by these action subcomponents guide state-action
pairs towards high-density regions within the dataset distribution,
mitigating exposure to unfamiliar states. Since CDSA focuses solely
on learning gradient fields from data, independent of RL baseline
algorithms, it seamlessly integrates with various algorithms such as
CQL, IQL, and POR. Our experiments in offline settings demonstrate
that our method effectively navigates away from hazardous areas
and makes decisions within familiar scenarios within the dataset
distribution. Combining baseline algorithms with CDSA leads to
improved performance on D4RL datasets across various qualities.
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