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ABSTRACT
Modern Large Language Models (LLMs) increasingly rely on exter-
nal tools—such as classifiers and knowledge retrieval systems—to
deliver accurate answers when their pre-trained knowledge falls
short. While this integration broadens their utility, it also raises a
critical issue: ensuring the trustworthiness of the combined outputs.
In high-stakes settings like medical decision-making, it is vital to
evaluate uncertainty in both the LLM’s response and the external
tool’s output. In this work we introduce a novel framework that
jointly assesses the combined uncertainty of the LLM and its ex-
ternal tools and derive practical and effective approximations to
estimate uncertainty. Our approach is validated on two synthetic
QA datasets and an experiment with retrieval-augmented gener-
ation (RAG) systems, demonstrating enhanced reliability when
external information is required for the LLM to produce answers.
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1 INTRODUCTION
Large Language Models (LLMs) are increasingly integrated with
external tools to enhance reasoning and access information beyond
their training data [11], extending their applicability to critical
domains such as medicine [14] and law [5]. However, existing
uncertainty quantification (UQ) methods [4] focus only on the
LLM’s outputs and fail to account for the uncertainty introduced by
tool calls. This limitation is particularly problematic in specialized
domains where external tools provide essential information.

We propose a framework for quantifying uncertainty in tool-
calling question-answering (QA) systems by jointly modeling the
uncertainty of both the LLM and the external tool. Assuming a
white-box setting where tool uncertainty is known, we extend
semantic entropy [4] to this scenario and introduce an efficient
approximation for practical deployment. We evaluate our method
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on two synthetic QA datasets derived from the IRIS [3] and PIMA
diabetes datasets, as well as on a retrieval-augmented generation
(RAG) [6] task using the BoolQ dataset [1]. Our results demon-
strate the effectiveness of our framework in improving uncertainty
estimation in tool-augmented LLM systems.

2 RELATEDWORKS
Uncertainty quantification for LLMs has been explored through
supervised models trained on LLM logits [7] and semantic uncer-
tainty approaches [2, 4], which estimate uncertainty over meanings
rather than individual tokens. While these techniques are effective
in detecting hallucinations, they do not consider the additional
uncertainty introduced by tool calls. Our framework extends these
methods by incorporating the predictive uncertainty of external
tools into a unified model.

Research on tool-calling LLMs [10, 11] has primarily focused on
training models for structured tool use and developing datasets to
enhance tool-selection capabilities [8]. Tool-calling benchmarks
[9, 15] evaluate models on API calls, database queries, and retrieval
tasks but do not address uncertainty quantification. Additionally,
many of these benchmarks use deterministic or highly complex
tools, making uncertainty estimation difficult. Instead, we focus
on controlled QA tasks with tools that provide known uncertainty
estimates, enabling a principled study of UQ in tool-augmented
LLMs.

3 METHOD
In this section we present our framework for uncertainty quantifi-
cation in tool-using LLMs. Let S be the set of all token sequences.
Let 𝑥 ∈ S be the prompt to the LLM. Let 𝑎 ∈ A ⊂ S be a se-
quence representing an invocation of an external tool. Let 𝑧 ∈ Z
be a result produced by the external tool, where Z is the space of
possible responses (e.g. Z = {0,1} for binary classifiers). Finally, let
𝑦 ∈ S be a sequence corresponding to the response produced by
the LLM after receiving the prompt and invoking the tool. Note
that this formulation covers the case of multiple tools, as they can
be encapsulated into a single tool with a more complex tool call 𝑎.

Our framework makes the following assumptions: 1) The final
response 𝑦 is independent of the invocation of the tool 𝑎 given the
tool response 𝑧. 2) The predictive entropy 𝐻 (𝑧 |𝑎) of the tool 𝑝 (𝑧 |𝑎)
is known.

We model the tool-calling process as a sequential process en-
compassing two calls to the LLM and one call to the tool.

𝑝𝜃 (𝑦, 𝑧, 𝑎 |𝑥) = 𝑝𝜃 (𝑦 |𝑧, 𝑥)𝑝 (𝑧 |𝑎)𝑝𝜃 (𝑎 |𝑥), (1)
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Figure 1: Illustration of an LLM+tool system. The system receives an input prompt 𝑥 that requires a tool (e.g. a classifier) to
answer. The LLM produces a tool call 𝑎 which acts as input to the tool, which produces output 𝑧. Finally, the LLM produces the
final answer 𝑦. Yellow indicates the features used to call the tool, green the question and red the final answer of the combined
system.

Model STAS STAP SEFA PEFA
Llama-3-8B-Inst. 0.845 0.824 0.615 0.553
Llama-3.1-8B-Inst. 0.752 0.668 0.642 0.529
Mistral-7B-Inst. 0.786 0.718 0.667 0.605

Model STAS STAP SEFA PEFA
Llama-3-8B-Inst. 0.791 0.730 0.663 0.634
Llama-3.1-8B-Inst. 0.675 0.662 0.515 0.580
Mistral-7B-Inst. 0.782 0.702 0.516 0.570

Model STAS STAP SEFA PEFA
Llama-3.1-8B-Inst. 0.675 0.646 0.662 0.622
Llama-3-8B-Inst. 0.648 0.645 0.570 0.575
Mistral-7B-Inst. 0.668 0.705 0.502 0.711

Table 1: Combined results for IRIS (left), Diabetes (middle), RAG (right) showing AUROC of STAS, STAP, SEFA, PEFA. Higher
numbers indicate better correlation with correctness.

Equation (1) shows the joint distribution over the variables in the
system, where 𝜃 corresponds to the parameters of the LLM. Figure
1 illustrates our framework for modeling tool-calling LLM systems.

3.1 Uncertainty quantification for tool-calling
systems.

Within our framework, we quantify uncertainty using entropy. We
now present a derivation for the predictive entropy 𝐻 (𝑦 |𝑥) in our
framework in terms of the known 𝐻 (𝑧 |𝑎) and other terms.

𝐻 (𝑦 |𝑥) = 𝐻 (𝑦, 𝑧, 𝑎 |𝑥) − 𝐻 (𝑧, 𝑎 |𝑥,𝑦),
𝐻 (𝑦 |𝑥) = 𝐻 (𝑦 |𝑧, 𝑎, 𝑥) + 𝐻 (𝑧 |𝑎, 𝑥) + 𝐻 (𝑎 |𝑥)

− 𝐻 (𝑧 |𝑥,𝑦, 𝑎) − 𝐻 (𝑎 |𝑥,𝑦).

By the conditional independence in eq. (1) we obtain:

𝐻 (𝑦 |𝑥) = 𝐻 (𝑦 |𝑧, 𝑥) +𝐻 (𝑧 |𝑎) +𝐻 (𝑎 |𝑥) −𝐻 (𝑧 |𝑦, 𝑎) −𝐻 (𝑎 |𝑥,𝑦). (2)

Similarly, we can also derive semantic entropy [4]:

𝐻 (𝐶 |𝑥) = 𝐻 (𝐶 |𝑧, 𝑥) +𝐻 (𝑧 |𝑎) +𝐻 (𝑎 |𝑥) −𝐻 (𝑧 |𝑦, 𝑎) −𝐻 (𝑎 |𝑥,𝑦), (3)

where 𝐻 (𝐶 |𝑧, 𝑥) can be estimated with samples. Computing equa-
tions (2),(3) is not tractable due to the posterior distributions. How-
ever, we can still obtain efficient and useful uncertainty measures
under some additional assumptions: (a) The answer 𝑦 depends
strongly on the tool output 𝑧 and 𝑧 is easy to infer given 𝑦

(𝐻 (𝑧 |𝑦, 𝑎) ≈ 0). (b) All of the information 𝑎 needed for the tool
is contained in 𝑥 , so knowledge of y does not help in infering 𝑎
(𝐻 (𝑎 |𝑥) − 𝐻 (𝑎 |𝑥,𝑦) ≈ 0).

These additional assumptions allow us to simplify equations (2)
and (3) into the Strong Tool Approximation (STA) of Predictive and
Semantic Entropy (𝑆𝑇𝐴𝑃 , 𝑆𝑇𝐴𝑆 ):

𝑆𝑇𝐴𝑃 (𝑥) = 𝐻 (𝑦 |𝑧, 𝑥) + 𝐻 (𝑧 |𝑎), (4)
𝑆𝑇𝐴𝑆 (𝑥) = 𝐻 (𝐶 |𝑧, 𝑥) + 𝐻 (𝑧 |𝑎). (5)

These metrics are simple to compute, amounting to only additively
combining the entropy of the LLM’s final answer, which can be esti-
mated using existing methods, and the entropy of the tool response,
which is assumed to be known. In the case of typical machine learn-
ing tools such as classifiers or regression models, this can be directly
computed as the entropy of the output distribution. Notably, these
metrics also apply to RAG systems by treating the retriever as a
categorical distribution over documents and computing the entropy
of the distribution.

4 RESULTS
In this section we validate our framework and the derived metrics.
In our experiments we use three synthetic QA datasets that require
tools: IRIS QA, PIMA QA and a small RAG dataset. The first two
are derived from well known machine learning datasets [3, 12] and
pose the corresponding classification problem as a natural language
question (fig. 1). The RAG dataset consists of yes/no questions
from the BoolQA [1] dataset, with a document bank derived from
wikipedia [13]. We evaluate on 150 questions from each dataset.

We estimate uncertainty using our 𝑆𝑇𝐴 metrics and compare
against baseline semantic and predictive entropies over the LLM
final answer (𝑆𝐸𝐹𝐴, 𝑃𝐸𝐹𝐴). We evaluate on 3 pre-trained instruc-
tion tuned models: Meta’s llama 3.0 and 3.1 8B models and Mistral
7B. Table 1 summarizes the results, showing STA metrics outper-
form the baselines in almost every case. In the RAG experiment,
performance gains are less clear because the STA assumptions are
not fully met: making use of the retrieved information may require
additional reasoning and knowledge in some cases. Still the metrics
are more informative in most cases for little additional computation.
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