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ABSTRACT
RL agents often operate under the assumption of environmental sta-
tionarity, which poses a great challenge to learning efficiency since
many environments are inherently non-stationary in state distribu-
tion. To address this issue, we introduce the Clustering Orthogonal
Weight Modified (COWM) layer, which can be integrated into the
policy network of any RL algorithm and mitigate non-stationarity
effectively. By employing clustering techniques and a projection
matrix, the COWM layer stabilize the learning process. Empirically,
the COWM layer is integrated into various RL methods and out-
performs state-of-the-art methods on the DMControl benchmark,
highlighting its robustness and generality across various tasks and
algorithms.
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1 INTRODUCTION
In recent years, reinforcement learning (RL) has made significant
progress across various domains, ranging from gaming to robotic
control, often surpassing human performance [2, 4, 6, 7, 9]. Despite
these advancements, a significant issue remains: the underlying
assumption of a stationary environment [8]. In numerous RL tasks,
environments are inherently non-stationary [1, 11], with critical
environmental components undergoing time-dependent changes.
In some extreme cases, the state transition function and reward
function may both change over time [5]. This non-stationarity
poses a challenge for RL agents in adapting effectively to dynamic
environments.

We propose the COWM layer which mitigates non-stationarity
and enhances the stability of the policy network in single-task by
constraining its gradients. This approach minimizes interference
with previously learned skills while learning new policies, thereby
improving sample efficiency and convergence speed. The COWM
layer exhibits high generalizability, making it suitable for all fully
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connected networks. It can be integrated into any RL algorithm
that uses fully connected network as policy network. Experiments
show that our method outperforms state-of-the-art vision-based
and state-based RL approaches, significantly improving sample
efficiency across various classical control tasks.

2 COWM LAYER IN POLICY NETWORK
2.1 Forward propagation and Projection matrix

calculation
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Figure 1: The architecture of COWM layer.

In terms of the computational process, Figure 1 illustrates the
forward and backward propagation of the COWM layer. The for-
ward propagation process remains unchanged. During each forward
propagation process, a part of projection matrix 𝑃𝑙 is computed (Eq.
1, 2).

𝑈𝑙−1 = 𝑘𝑚𝑒𝑎𝑛𝑠 (𝑋𝑙−1, 𝑐)
u𝑗

𝑙−1 = 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 (x𝑝
𝑙−1,𝑈𝑙−1)

𝐴𝑙 = {𝑈𝑙−1/u𝑗

𝑙−1}
(1)

𝑃𝑙 = 𝐴𝑙 (𝐴𝑇𝑙 𝐴𝑙 )−1 (2)

where X𝑙−1 =

[
x̄1
𝑙−1, x̄

2
𝑙−1, ..., x̄

𝐹
𝑙−1

]
∈ 𝑅𝑑×𝐹 is a matrix composed

of the principal component of the input in layer 𝑙 .

2.2 Orthogonal weight modification and
Backpropagation

During backpropagation, the output layer of the neural network
receives the gradient signal. On one hand, the gradient signal is
propagated back to the input layer in the same manner as in stan-
dard BP algorithm (Eq. 3). On the other hand, the input is projected
using the projection matrix before calculating the weight updates
(Eq. 3).

Δ𝑊𝐶𝑂𝑊𝑀
𝑙

= −𝜂
(
𝜕𝐿

𝜕a𝑙
x𝑙−1 −

𝜕𝐿

𝜕a𝑙
𝑃𝑙𝐴

𝑇
𝑙

x𝑙−1

)
(3)

Task SAC CURL DrQ-v2 DreamerV3 COWM

Acrobot Swingup 5.1 5.1 128.4 210 322
Cartpole Balance 963.1 979 991.5 996.4 999.7

Cartpole Balance Sparse 950.8 981 996.2 1000 1000
Cartpole Swingup 692.1 762.7 858.9 819.1 831.4

Cartpole Swingup Sparse 154.6 236.2 706.9 792.9 770.1
Cheetah Run 27.2 474.3 691 728.7 866.1
Cup Catch 163.9 965.5 931.8 957.1 983.4
Finger Spin 312.2 877.1 846.7 818.5 829.3

Finger Turn Easy 176.7 338 448.4 787.7 969.7
Finger Turn Hard 70.5 215.6 220 810.8 942.2

Hopper Hop 3.1 152.5 189.9 369.6 474.5
Hopper Stand 5.2 786.8 893 900.6 956.8

Pendulum Swingup 560.1 376.4 839.7 806.3 910.1
Quadruped Run 50.5 141.5 407 352.3 426.2
Quadruped Walk 49.7 123.7 660.3 352.6 415.6
Reacher Easy 86.5 609.3 910.2 898.9 985.1
Walker Run 26.9 376.2 517.1 757.8 764.4
Walker Stand 159.3 463.5 974.1 976.7 996.9
Walker Walk 38.9 828.8 762.9 955.8 982.8

Median 86.5 463.5 762.9 810.8 942.2
Mean 236.7 510.2 682.8 752.2 822.9

Table 1: The performance of COWM and SOTA baselines
on vision-based DMControl tasks under 1M environment
steps across 3 random seeds.. The bold values are the highest
among each row.

𝑊𝑙 (𝑡 + 1) =𝑊𝑙 (𝑡) + Δ𝑊𝐶𝑂𝑊𝑀
𝑙

(4)
Finally, the COWM layer must also complete the backpropaga-

tion of gradients (Eq. 5). The COWM layer transmits the gradient
information from the output layer back to the input side in the
same manner as a linear layer. This gradient is used to train the
deep neural network layer by layer.

𝜕𝐿

𝜕x𝑙−1
=𝑊𝑙

𝜕𝐿

𝜕a𝑙
(5)

We adopt the actor-critic learning settings from DreamerV3 [3].

3 EXPERIMENTS
We evaluate the performance of COWM on the widely-used DM-
Control benchmark [10]. We evaluate the methods on 19 vision-
based DMControl tasks. All experimental results and part of the
training curves are presented in Table 1. The results show that
COWM outperforms previous SOTA methods under 1M interac-
tions on 15 tasks.
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