
DyLam: A Dynamic Reward Weighting Framework for
Reinforcement Learning Algorithms

Extended Abstract

Mateus Machado
Centro de Informática - UFPE

Recife, Brazil
mgm4@cin.ufpe.br

Hanseclever Bassani
Centro de Informática - UFPE

Recife, Brazil
hfb@cin.ufpe.br

ABSTRACT
Creating a Reinforcement Learning (RL) training environment is
a known difficulty in the field. When the reward is a compo-
sition of different signals, defining the weights for each signal
represents the learning curricula the agent will follow during
training. The process of trying new weights endures until the agent
reaches the objective of the environment. We present DyLam, a
robust automated self-curriculum learning framework for RL
algorithms. By requiring only an estimate of the theoretical
maximum and minimum of each reward component, DyLam
can adjust its weights dynamically during training, depending
on which signal needs to be optimized at each training stage. We
show experimentally the robustness of this method compared
to the state-of-the-art in the Lunar Lander discrete control
benchmark context.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning.

KEYWORDS
Reinforcement Learning, Curriculum Learning, Multi-Objective
Optimization

ACM Reference Format:
Mateus Machado and Hanseclever Bassani. 2025. DyLam: A Dynamic Re-
ward Weighting Framework for Reinforcement Learning Algorithms: Ex-
tended Abstract. In Proc. of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May
19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
The reward shaping technique, introduced to address the challenge
of sparse rewards, involves adding supplementary reward signals
aligned with sub-tasks or intermediate objectives within a Rein-
forcement Learning (RL) environment [6]. Each reward component
contributes a weighted value to the final reward signal, represented
by the weights 𝜆. These weights influence the agent’s focus, dictat-
ing which aspects of the task should receive more attention during
the whole training process, effectively shaping a static curriculum
the agent follows [8].

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Consider a soccer environment where the agent’s final goal is to
score. Before achieving this, the agent must learn sub-skills, such
as moving towards the ball, carrying it, and shooting accurately. A
sensible curriculum would prioritize simpler tasks like movement
and ball control, before advancing to more complex behaviors like
shooting and scoring. If these tasks are incorrectly weighted, an
agent could become proficient at carrying the ball but fail to develop
the capability to score.

In this paper, we propose a novel RL framework called the Dy-
namic Lambda Reward Weighting Function (DyLam), which dy-
namically adjusts the weights of stratified value functions through-
out training. DyLam is designed to address the challenge of bal-
ancing multiple reward components by learning optimal value
functions for each distinct component and adapting policies to re-
flect changing priorities. By continuously adjusting the 𝜆 weights,
DyLam shifts focus towards under-optimized components, promot-
ing a more efficient learning process. Positioned at the intersection
of single-objective and multi-objective problems, DyLam offers a
flexible approach that integrates automated curriculum learning
with dynamic reward balancing.

2 DYNAMIC LAMBDA REWARDWEIGHTING
FUNCTION

In this section, we formalize our approach called Dynamic Lambda
Reward Weighting Function (DyLam). We denote 𝜆 ∈ R𝑛 as the
vector of weights associated with the vector 𝑟 : 𝑆 ×𝐴 × 𝑆− > R𝑛 .
In essence, DyLam stands as an automated self-curriculum learn-
ing framework, dynamically adapting weights according to en-
vironmental rewards. Our approach steers the agent’s attention
towards the most crucial reward component in the current context
throughout the training process. As the easiest components are op-
timized, the method gradually reduces their weights and increases
the weights of other components yet to be optimized.

Firstly, the reward function is decomposed into compo-
nents that should vary in similar ranges. For example, we can
decompose the reward function of a grid world environment into
two functions of 𝑥 and𝑦 distances to the objective [1], each ranging
from zero to one. It is recommended to have all reward components
varying in similar scales so that the method applies similar levels
of importance for them, differing only in their learning difficulty,
thus prioritizing learning the easiest ones first.

The second step is to decompose the value function into a
list of 𝑄-values, each associated with one reward component.
[7] proof of decomposition of value functions is crucial to this part
of our work, as it ensures it is a sound optimization objective for

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2651

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0
Number of training steps ×105

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

La
nd

in
g

ra
te

LunarLander-v2
DQN
drQ
DyLam

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Number of training steps ×105

1.0

0.5

0.0

0.5

1.0

Cu
m

ul
at

iv
e

Ep
iso

de
 R

ew
ar

ds
 (N

or
m

al
ize

d)

LunarLander-v2

Shaping
Power Linear
Power Angular
Landing Rate

(b)

0.2 0.4 0.6 0.8 1.0
Number of training steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

 w
ei

gh
ts

LunarLander-v2
Shaping
Power Linear
Power Angular
Landing Rate

(c)

Figure 1: (a): Training results for the Landing Rate using DQN, DQN+drQ, and DQN+DyLammethods. The shaded areas indicate
the range of observed values, while the thick curves represent the moving average over 100 time steps. (b): Evolution of rewards
(moving average of 100 Episodes). Traced lines represent the set practical maximum of each reward. (c): 𝜆 weights fit.

every MDP. Our value functions then turn to regression models that
fit each expected reward component accumulated without applying
weights.

The last step varies when using the local 𝑄-learning or Actor-
Critic frameworks. The value-based approach will use the weights 𝜆
only in the policy step with a dot product in the𝑄-values:𝑄 (𝑠, 𝑎) =∑𝑛
𝑖=0 𝜆𝑖𝑄𝑖 (𝑠, 𝑎). While in the Policy Gradient, we reorganize the

policy training process tomultiply the value function by theweights
𝜆 found using a weight adjustment method.

Using the static weighting function, we proved that the Critic
becomes a regression model of 𝑄∗ for each reward component
and trained the Actor with a weighted sum of 𝑄-values. Using a
dynamic weight adjustmentmethod, we do the same for training the
estimators, but we change the function that weights the 𝑄-values.
Now the vector 𝜆 is a function of the actual performance of the agent

in the environment: 𝑅𝑖𝑡 = 𝑅𝑖𝑡 + 𝜏𝜆 (𝑅𝑖𝑡−1 − 𝑅𝑖𝑡); 𝜁𝑖 (𝑅𝑖𝑡) =
𝑅𝑖
𝑚𝑎𝑥−𝑅𝑖

𝑡

𝑅𝑖
𝑚𝑎𝑥−𝑅𝑖

𝑚𝑖𝑛

:

𝜆𝑖 (𝑅𝑖𝑡) =
𝑒𝜁𝑖 − 1[∑𝐶

𝑖 (𝑒𝜁𝑖 − 1)
]
− 𝜖

(1)

where, 𝑅𝑖𝑡 is the moving average accumulated return for the i-th
component, 𝜏𝜆 is a smooth update factor, 𝜁 is the inverse score of
the component according to its maximum reward, 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛

define the ranges for the reward component, and 𝜖 is a small value
to prevent division by zero.

The main idea of the method is to reduce each weight 𝜆𝑖 as
the agent learns the associated skill, prioritizing on the harder
ones after learning the easier ones. However, this must be done
smoothly to prevent instabilities. Therefore, we use smooth updates
similar to the 𝜏-updates presented in Deep Deterministic Policy
Gradient (DDPG) [4]. The smooth 𝜆 updates lead to a low variance
of

∑𝑁
𝑖 𝜆𝑖𝑄𝑖 (𝑠, 𝑎) for the same state-action pairs along with the

training.

3 EXPERIMENTS
We evaluate our framework in the LunarLander-v2 scenario, mod-
ifying only the reward ranges, normalizing each component by
its theoretical step (not cumulative) maximum and minimum,

and applied the Multi-Objective Reinforcement Learning (MORL)
learning framework from MO-Gymnasium [2].

A key aspect of our experimental setup is that we compare the
proposed method against the environment’s baseline only1. We
evaluate Deep Q-Networks (DQN) [5], drQ (an adapted form of
the decomposed Q-Learning of [7] using neural networks), and
DQN-DyLam. As we explain in Section 2, we scale all reward
components to have similar ranges. Due to this adjustment,
we could not compare cumulative episode rewards directly, as the
reward scales differed from the original benchmarks [3]. In the
baseline and drQ methods, all reward components are treated with
equal importance, i.e. 𝜆𝑖 = 1 ÷ #𝑟𝑒𝑤𝑎𝑟𝑑𝑠 . Importantly, this changes
and setup did not affect the baselines’ original performances when
analyzing the proposed metrics.

As shown in Fig. 1a, DyLam’s agent outperforms the baselines
in early training, achieving a 90% landing success rate by halfway
through the training period, while, particularly, DQN reaches this
rate only after 75% of training. Upon analyzing Fig. 1b, we observe
that DyLam’s agent incurs more penalties during early training.
This behavior arises because the agent prioritizes learning how
to land first, as reflected in Fig. 1c, before optimizing for landing
efficiency—an intuitive approach akin to “first focus on landing,
then on landing efficiently.”

4 CONCLUSION
This extended abstract introduced the Dynamic Lambda Reward
Weighting Function (DyLam) algorithm, an automated curriculum
learning approach for reinforcement learning methods. By decom-
posing the reward function into components of comparable scales,
DyLam dynamically adjusts weights based on the agent’s perfor-
mance for each reward component, effectively prioritizing what the
agent needs to learn at each stage of the training. The experiments
conducted in the LunarLander-v2 environment substantiate the ef-
fectiveness of DyLam’s automated self-curricula learning approach.
The results not only reveal its superior performance compared to
the baseline but also highlight its potential to provide insight into
the learning process of the model over time.
1Code available in: https://github.com/goncamateus/dylam

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2652

https://github.com/goncamateus/dylam

REFERENCES
[1] Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E Taylor, Daniel Kudenko,

and Ann Nowé. 2014. Multi-objectivization of reinforcement learning problems by
reward shaping. In 2014 international joint conference on neural networks (IJCNN).
IEEE, 2315–2322.

[2] Florian Felten, Lucas N. Alegre, Ann Nowé, Ana L. C. Bazzan, El Ghazali Talbi,
Grégoire Danoy, and Bruno C. da Silva. 2023. A Toolkit for Reliable Benchmarking
and Research in Multi-Objective Reinforcement Learning. In Proceedings of the
37th Conference on Neural Information Processing Systems (NeurIPS 2023). NeurIPS,
Cham.

[3] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam
Chakraborty, Kinal Mehta, and João G.M. Araújo. 2022. CleanRL: High-quality
Single-file Implementations of Deep Reinforcement Learning Algorithms. Journal
of Machine Learning Research 23, 274 (2022), 1–18. http://jmlr.org/papers/v23/21-

1342.html
[4] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2019. Continuous control with deep
reinforcement learning. arXiv:1509.02971 [cs.LG]

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv:1312.5602 [cs.LG]

[6] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In Icml, Vol. 99.
278–287.

[7] Stuart J Russell and Andrew Zimdars. 2003. Q-decomposition for reinforcement
learning agents. In Proceedings of the 20th International Conference on Machine
Learning (ICML-03). 656–663.

[8] XinWang, YudongChen, andWenwuZhu. 2020. A Survey onCurriculum Learning.
https://doi.org/10.48550/ARXIV.2010.13166

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2653

http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1312.5602
https://doi.org/10.48550/ARXIV.2010.13166

	Abstract
	1 Introduction
	2 Dynamic Lambda Reward Weighting Function
	3 Experiments
	4 Conclusion
	References

