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ABSTRACT
The options framework introduces the concept of temporal ab-
straction in MDPs by combining high level courses of action with
primitive, single-step actions which can greatly improve planning
and learning speeds. Throughout the past two decades, there has
been active interest in autonomous option discovery, as well as
determining what characterizes a good option. One example of
such interest and advance is the Option-Critic Architecture. How-
ever, given that the ideal number of options for learning an optimal
policy is not evident for most problems, Option-Critic’s reliance on
a fixed set of options proves as a limitation. In the present work, we
propose an algorithm for creating options dynamically in training
time, using the Fast-Planning Option-Critic implementation as a
base. The Dynamic Option Creation algorithm (DOC) analyzes the
variance in episodic returns when selecting each option to deter-
mine whether the learning process would benefit from a new option.
Our method achieves similar per-episode returns as FPOC in the
four-rooms environment, with the added benefit of discovering the
ideal number of options automatically.

KEYWORDS
Reinforcement Learning; Options; Dynamic; Creation; Option-Critic
ACM Reference Format:
Mateus B. Melchiades, Gabriel de O. Ramos, and Bruno C. da Silva. 2025.
Dynamic Option Creation in Option-Critic Reinforcement Learning: Ex-
tended Abstract. In Proc. of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May
19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
The Options Framework [8] introduces the concept of temporally
abstracted actions in Reinforcement Learning, which can reduce
the time to learn an optimal policy for a given environment by
abstracting desired courses of action into sub-policies, known as
intra-option policies, each representing some higher level action.
Despite its clear advantage, what characterizes a good option, as
well as what should an option achieve, is still open for debate [1–7,
9]. We approach option discovery with the idea that options should
complement each other, and that new options should be created if,
and only if, the current set of options cannot cover the entire state
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space. If no option is capable of providing consistent returns for a
region in the state space, we can assume such region is not covered
and a new option is necessary for handling it. An inconsistent
set of returns can be represented by the variance in accumulated
rewards over multiple episodes. Given that accumulated reward
tends to vary drastically as an agent first explores varied courses
of action but stabilizes as training progresses, we can interpret a
continuously high variance in returns as the agent struggling to
learn parts of the environment.

We introduce Dynamic Option Creation (DOC): an algorithm
capable of automatically scaling the number of options dynamically
by observing the variance in accumulated rewards over time. If
the variance in accumulated rewards fails to decrease as training
progresses, then a new option is automatically created and initial-
ized using experience replay from steps where previous options are
unlikely to be selected. To the best of our knowledge, this is the first
approach capable of creating options dynamically in Option-Critic.

2 DYNAMIC OPTION CREATION
The return of an option has variance, which can be influenced by
the stochasticity of the environment, the stochastic nature of an
option’s policy, or the ongoing updates to the policy during the
learning process. The first component affecting return variance—
exogenous variance—cannot be controlled by the agent and is de-
termined solely by the dynamics of the MDP itself. During the
learning process, policies are typically initialized randomly which
temporarily results in increased return variance as the policy is
still being frequently updated. As the policy is updated towards
convergence, the variance in returns will naturally decrease. For
these reasons, we posit that variance in an option’s return can serve
as a proxy for epistemic uncertainty.

We propose a novel approach to assess the quality of an option
by observing its variance over a specified time period. After 𝑛
episodes, we interrupt training and run an evaluation process for
𝑚 episodes where the agent acts greedily. We can define V𝑜 �
{𝜎2

𝑅𝑜
𝑝
|O𝑝 = 𝑜, 𝑝 ∈ P} as the variance in accumulated rewards

for option 𝑜 , where P = 0, 1, 2, . . . ,𝑚 is the set of all evaluation
episodes and 𝑅𝑜𝑝 is the accumulated reward for every step in 𝑝

where the agent chose option 𝑜 . By repeating this process enough
times, we can build a set 𝜍𝑜 �

{
V1
𝑜 ,V2

𝑜 ,V3
𝑜 , . . .

}
containing the

variances of multiple evaluation processes. We can then apply a
definite integration over 𝜍𝑜 to observe the increase in variance over
time. If we define the slope of some linear function as a threshold,
we can use it to determine whether the variance is continuously
higher than desired. We can determine the integral’s slope for a
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window of data by first applying a linear regression to the values
inside it and then derivating the result relative to 𝑥 , which gives
us the slope in the regression. When applying this logic to a small
enough window, the loss in precision is marginal. We can define
the definite integral of 𝜍𝑜 by using the trapezoidal rule and then
applying linear regression to its result, thus obtaining:

lsreg ©«
|𝜍𝑜 |∑︁
𝑘=1

𝜍𝑜𝑘−1 + 𝜍𝑜𝑘

2
ª®¬ ≈ 𝑤1𝑥 +𝑤0 (1)

The uncertainty factor 𝜀𝑜 for the current option is then defined
by the derivative obtained from the regression in Equation 1:

𝜀𝑜 � ( 𝑒 |O| )−
2
𝑓

[
𝑑

𝑑𝑥
𝑤1𝑥 +𝑤0

]
, (2)

where the discount factor ( 𝑒 |O| )−
2
𝑓 prevents options from being

created too frequently, being 𝑓 the number of times the algorithm
has calculated the uncertainty factor but did not create a new option.

The uncertainty factor is then compared against the threshold
for deciding whether a new option is necessary. If 𝜀𝑜 is above the
threshold, it means that the variance’s integral is continuously high.
We initialize a new option 𝑜+ with pessimistic (negative) values
for the option-value function 𝑞𝑜+ with the goal of discouraging
exploration. Given that we want 𝑜+ to focus solely on states where
previous options fail, exploration can lead it to copy behavior al-
ready learned by other options. We also set the interest function for
𝑜+ as 𝑖𝑜+ (𝑠)=−

∑O\𝑜+
𝑜 𝑖𝑜 (𝑠) ∀𝑠 ∈ S, so that it has greater interest in

states where existing options do not and vice-versa.
After conditioning 𝑜+ to give higher emphasis towards state

spaces where previous options perform poorly, we apply expe-
rience replay to the new option before resuming training. Each
element in the replay buffer represents a full episode and contains
its history ⟨𝑆, 𝑟, 𝑆 ′,⊥⟩ as well as the episodic return 𝐺1:𝜏 . For each
step recorded in the buffer, we use the same option selection tech-
nique used in training to check whether the algorithm would select
the newly created option. If the option most likely to be selected is
𝑜+, we apply the experience step, otherwise, that step is skipped,
thus conditioning 𝑖𝑜+ towards state spaces less visited by previous
options. In DOC, we retain the same option selection process used
by FPOC as our main focus is in creating options.

3 EXPERIMENTAL EVALUATION
We compare DOC using different threshold values against FPOC
with varied number of options in the four-rooms environment [8],
where each experiment ran 30 times with the same set of random
seeds. The threshold is the most important parameter when con-
figuring DOC given that it indicates how much variance over time
is acceptable before creating a new option. If set too low, the algo-
rithm may create options unnecessarily, while setting it too high
can hinder learning speed. Whenever a new option is created, the
episodic returns tend to stagnate or decrease for some episodes as
the new option gets introduced into the training process. In general,
the sooner an option is introduced, the smaller the impact in learn-
ing performance. Table 1 shows how many episodes on average
each threshold value took to reach a mean accumulated reward of
-26 over 10,000 episodes, which is close to the upper bound reached
by all algorithms in this experiment.

Table 1: Average number of episodes until reaching a mean
return of -26 for FPOC and DOC with different thresholds.

Algorithm Avg. Eps. to Convergence Std Error

DOC (L=800) 1,078,092.86 9,209.72
DOC (L=200) 1,152,632.14 8,818.80
DOC (L=1200) 1,171,682.14 11,673.91
FPOC (4 Options) 1,185,590.00 9,176.59
FPOC (2 Options) 1,236,082.76 10,528.60
FPOC (1 Option) 1,288,789.29 7,668.41

Figure 1: Policies, interest, and termination functions learned
by DOC in two sample tasks.

Figure 1 shows the learned intra-option policies for each dynamic
option alongside their interest and termination functions for two
different goal positions. By observing the policies on the left, we can
see that DOC created a second option that focuses on navigating
towards the goal room, while the first option was responsible for
reaching the goal from inside the room itself. This behavior can be
considered meaningful as both policies represent some well-defined
course of action. Meanwhile, when the goal is located at a door, we
can see that each option covers a different half of the environment.
We attribute this behavior to the fact that the goal is between two
rooms, so we can consider both the top and bottom-left rooms as
the goal room. From this perspective, the option on the left focuses
on navigating towards the goal, while the option on the right goes
towards the goal room, which is the same behavior observed when
the goal is inside a single room.

4 CONCLUSION
This work proposed a novel method for dynamically creating op-
tions in training time in Option-Critic algorithms. When compared
to FPOC, our approach learns options only as necessary with no
increase in training steps needed for convergence. Despite the bene-
fits mentioned above, our method has limitations outside the scope
of the current work, such as the reliance on a human-provided
uncertainty threshold and its tabular nature, which can limit its
applicability in more complex environments.
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