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ABSTRACT
We investigate how to adapt against known sub-optimal oppo-
nents while maintaining robustness against rational players in
large imperfect-information zero-sum games. Previous approaches
to large games use depth-limited search since examining the com-
plete game tree is computationally infeasible. In computing a robust
strategy against an opponent, the latest methods assume rational
play beyond the search depth limit, restricting their ability to adapt
to the opponent’s behavior. To address this limitation, we intro-
duce Adapting Beyond Depth-limit (ABD). This algorithm employs a
strategy-portfolio approach – which is called matrix-valued states –
for depth-limited search. ABD is the first robust adaptation method
capable of fully utilizing all available information about opponent
models in large imperfect-information games. The matrix-valued
states approach also simplifies the algorithm compared to previous
methods that rely on optimal value functions. Our experiments
demonstrate that ABD may double the utility when facing op-
ponents who make mistakes beyond the depth and significantly
improves utility against randomly generated opponents while main-
taining safety against worst-case rational adversaries.
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1 INTRODUCTION
Recent advances in solving large imperfect-information games rely
on depth-limited methods that avoid searching through intractably
large full game trees [1–3, 12]. Instead, these methods look a few
steps ahead and use value functions, typically represented by neural
networks, to approximate outcomes beyond the depth limit [7].

Most existing work assumes fully rational opponents, but this
assumption often fails in practice due to cognitive or computational
limitations [4, 9, 13]. While some research addresses sub-rational
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opponents in depth-limited settings, currentmethods cannot exploit
opponent’s mistakes beyond the depth limit [5, 8, 11]. For instance,
if an opponent has an exploitable behavior that occurs 𝑑 + 1 steps
ahead, a method that only looks 𝑑 steps ahead while assuming
optimal play thereafter will miss this opportunity.

We introduce Adapting Beyond Depth-limit (ABD), which uses
matrix-valued states instead of optimal value functions at the depth
limit. This approach allows players to choose from a strategy port-
folio, with utilities determined by their joint choices. ABD adapts
to sub-rational opponents by replacing their portfolio with their
modeled strategy, making it the first depth-limited method capable
of utilizing all opponent mistakes while maintaining robustness.

Experimental results in poker and battleship show that ABD yields
more than a twofold increase in utility when facing opponents who
make mistakes beyond the depth limit and also delivers significant
improvements in utility against randomly generated opponents.

The full version of the paper can be found at [10].

2 BACKGROUND
Our method is based on the Restricted Nash response [6], which
creates robust counter-strategies in two-player games. It assumes
there’s a probability p that the opponent will use their fixed strategy
and a probability (1-p) that they’ll play rationally knowing the
strategy we deployed. The parameter p effectively controls how
much the strategy attempts to adapt to the fixed opponent strategy
versus playing safely against the worst-case adversary.

This scenario can be modeled by creating a modified version of
the original game, starting with a chance node. Based on this chance
event, which only the opponent can observe, the game proceeds in
one of two ways: either the opponent is forced to play their fixed
strategy, or both players play the original game without restrictions.
The optimal strategy for this modified game is a 𝑝-restricted Nash
response to the opponent’s fixed strategy [6].

3 ADAPTATION BEYOND THE DEPTH-LIMIT
In this section, we describe the method adapting beyond depth-
limit (ABD) that can strike a balance between playing well against
a specific opponent and remaining unexploitable. Unlike previous
depth-limited methods, ABD can take advantage of the opponent’s
mistakes, irrespective of whether they occur within or beyond the
depth limit. In Section 3.1, we describe the idealised version of
the method, assuming we have a value function that captures the
behavior of the specific opponent. In Section 3.2, we describe two
practical methods for approximating the idealised value function
described in Section 3.1.
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3.1 Idealised ABD
The idealised version of the Adapting Beyond Depth-limit (ABD)
algorithm operates on games where each player has a set of possible
strategies (called a portfolio). The algorithm takes three parameters:
a depth limit determining how far ahead to look in the game tree, a
fixed strategy representing the opponent’s expected behavior, and
a probability parameter that balances adaptation to the opponent
and maintaining robustness. The algorithm works by transforming
the original game through the following steps:

First, it creates a modified game that implements the restricted
Nash response mechanism, allowing for either facing the fixed op-
ponent strategy or a rational opponent. Then, it creates a subgame
starting from the current game state, incorporating the informa-
tion about previously played moves, and uses a gadget to ensure
robustness [11]. Finally, it creates a depth-limited version of this
subgame where players must choose from their strategy portfolios
after reaching the depth limit. In the idealised version, we assume
the portfolio consists of all the pure strategy continuations.

The algorithm then finds a Nash equilibrium in this transformed
game and uses it to determine the next action. This algorithm is
idealised since when constructing the depth-limited version, we
need the values of the portfolio against the fixed opponent strat-
egy. In the idealised version, we assume we have access to those.
However, in practical implementation, we need to compute them,
and we discuss that in Section 3.2

The gadget at the top of the modified game follows the construc-
tion described by [11]. In the subgame where the opponent is fixed,
we introduce an initial chance node, which sets the initial reaches
at the root of the subgame to the combined reaches of all players,
including chance. In the subgame where the opponent plays ratio-
nally, we use the full gadget proposed by [11]. In this idealised case,
we show that ABD produces a 𝑝-restricted Nash response [10].

3.2 Practical ABD Implementation
The idealised version faces two practical limitations in large games.
First, it’s impractical to include all pure strategies in the portfo-
lios. For example, even a modest-sized Battleships game with a
5x5 board and two 2x1 ships would require portfolios containing
approximately 1025 strategies. This is addressed by using a limited
selection of diverse strategies.

Second, computing exact values for all strategy combinations is
computationally expensive, even with moderately sized portfolios.
While we can precompute values when both players use portfo-
lio strategies, we face an opponent we need to model in practice.
Therefore, the fixed opponent remains unknown until gameplay
begins. Therefore, values against this opponent must be estimated
during play. We use a sampling approach: for each leaf history,
we sample 𝑛 continuation trajectories for every strategy in our
portfolio, assuming our agent follows the chosen strategy from the
portfolio and the opponent follows its fixed strategy. Then, we use
the average of these sampled values as our estimate.

These practical considerations lead to an implementation that
balances theoretical correctnesswith computational feasibilitywhile
maintaining the algorithm’s core ability to adapt to opponent be-
havior beyond the depth limit.

4 EXPERIMENTS
We conduct experiments in both small and large imperfect informa-
tion games to highlight the failure modes of continual depth-limited
best/robust response (CDBR/CDRNR) [11] and demonstrate the
adaptability of our method against subrational strategies.

4.1 Failure of Previous Methods
In our first experiment, using a 2x2 Battleships game with a 1x1
ship, we tested against an opponent who shoots uniformly except
for targeting the top-left corner as their last move. CDBR failed to
exploit this pattern at all, only achieving the game’s base value (0.25)
until observing two out of three significant moves. In contrast, ABD
consistently won using a portfolio of four strategies, each avoiding
a different cell while shooting uniformly elsewhere.

Depth 1 2 3 4
CDBR 0.25 0.25 1.00 1.00

ABD (𝑝 = 1) 1.00 1.00 1.00 1.00
Table 1: Winrate at different depths on 2x2 battleships with
one 1x1 ship against an opponent who always shoots the top
left corner last. Depth is the number of future opponents’
moves contained in the depth-limited subgame.

4.2 Leduc Experiments
We then conducted experiments in Leduc poker against four specific
opponent strategies and 1,000 randomly generated ones. The op-
ponent strategies (S1-S4) included variations of aggressive/passive
patterns in different rounds. ABD significantly outperformed CDBR
against both the specific strategies and random opponents, though
the improvement margin was smaller against random strategies
(with 95% confidence intervals).

We compared ABD with CDRNR against S1. CDRNR performs
better for very small 𝑝 because it uses the optimal value function.
For 𝑝 > 0.2 ABD beats CDRNR and is very close to the RNR.

S1 S2 S3 S4 Random
CDBR 1 5 1 3 2.475 ± 0.016
ABD (𝑝 = 1) 2.3 5 4.2 5 2.536 ± 0.015

Table 2: Results of CDBR and ABD against heuristic strategies
S1 to S4 and Random in Leduc hold’em.

5 CONCLUSION
This paper tackled adapting to subrational opponents in large,
imperfect-information games with depth-limited solving. We intro-
duced a novel framework using matrix-valued states to model oppo-
nent strategies beyond the depth limit. Our method demonstrated
slightly better robust adaptation to random opponents compared
to CDRNR, the state-of-the-art approach. Notably, it significantly
outperformed CDRNR against opponents making mistakes in later
game stages, achieving a twofold increase in gain.
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