
Learning Heterogeneous Agent Collaboration in Decentralized
Multi-Agent Systems via Intrinsic Motivation

Extended Abstract

Jahir Sadik Monon∗
University of Dhaka
Dhaka, Bangladesh

jahirsadikmonon@gmail.com

Deeparghya Dutta Barua∗
University of Dhaka
Dhaka, Bangladesh

deeparghya.csedu@gmail.com

Md Mosaddek Khan
University of Dhaka
Dhaka, Bangladesh
mosaddek@du.ac.bd

ABSTRACT
Multi-agent Reinforcement Learning (MARL) is emerging as a key
framework for various sequential decision-making and control
tasks. Unlike their single-agent counterparts, multi-agent systems
necessitate successful cooperation among the agents. The real-
world deployment of these systems requires decentralized training
and execution (DTE), diverse agents, and learning from infrequent
environmental rewards. These challenges becomemore pronounced
under partial observability and the lack of prior knowledge about
agent heterogeneity. While notable studies use intrinsic motivation
(IM) to address reward sparsity or cooperation in decentralized ex-
ecution settings, those dealing with heterogeneity typically assume
centralized training for decentralized execution (CTDE). To over-
come these limitations, we propose the CoHet algorithm, which
utilizes a novel Graph Neural Network (GNN) based intrinsic moti-
vation to facilitate the learning of heterogeneous agent policies in
fully decentralized settings, under the challenges of partial observ-
ability and reward sparsity. Evaluation of CoHet in the Multi-agent
Particle Environment (MPE) and Vectorized Multi-Agent Simulator
(VMAS) benchmarks demonstrates superior performance compared
to the state-of-the-art in a range of cooperative multi-agent sce-
narios. Our research is supplemented by an analysis of the impact
of the agent dynamics model on the intrinsic motivation module,
insights into the performance of different CoHet variants, and its
robustness to an increasing number of heterogeneous agents.
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1 INTRODUCTION
The paradigm of Multi-agent Reinforcement Learning (MARL) is
rapidly evolving to be pivotal in a broad spectrum of practical appli-
cations [5, 6, 8, 18]. Successfully executing tasks in many of these
multi-agent scenarios requires the agents to learn collaboration
while relying solely on local information and infrequent environ-
mental rewards [19, 20]. The dependency on reward signals for the
agents’ learning process introduces the issue of reward sparsity [10]
and the non-trivial nature of manually designing reward functions
means that MARL systems need to be robust enough to deal with
infrequent environmental rewards.

Applications such as package transport [9], disaster response
[17], agriculture [12], etc. utilize agent heterogeneity such as dis-
tinct physical and behavioral traits of agents (e.g. speed, size, action
space). Heterogeneity is also vital in multi-robot tasks as it en-
ables efficient characterization and discovery of diverse behaviors,
improving learning performance [14]. Moreover, as real-world ap-
plications constrain the agents to learn in a decentralized manner
under partial observability, it is impractical for them to learn collab-
oration using a centralized algorithmwith a global knowledge of the
agents or the state space [11, 13]. Despite real-world requirements,
existing solutions rely on global parameter sharing or centralized
training (CTDE) [1] approaches. While Andres et al. [2], Zheng
et al. [22] address heterogeneous agent collaboration under par-
tial observability and reward sparsity, the former utilizes a central
critic, and the latter defines heterogeneity differently as a mixture
of on-policy, off-policy, and Evolutionary Algorithm agents.

In this work, we propose the CoHet algorithm to facilitate the
learning of heterogeneous agent collaboration while addressing
the constraints required for real-world applications, such as reward
sparsity and partial observability. CoHet does not require any prior
knowledge of agents’ heterogeneity and is fully decentralized (DTE)
[1]. Our specific contributions are as follows:

A Novel Intrinsic Reward Mechanism: To our knowledge,
this is the first algorithm to calculate intrinsic rewards using a
Graph Neural Network (GNN)-based local neighborhood observa-
tion aggregation. Unlike previous decentralized mechanisms that
calculate intrinsic rewards based solely on single neighboring ob-
servations [16], this approach effectively captures neighborhood
heterogeneity and provides more accurate reward estimations for
diverse agent characteristics.

Integration with Established Algorithms: CoHet’s intrin-
sic reward learning module can be integrated with existing de-
centralized policy learning algorithms with minimal adjustments,
thus enhancing performance in cooperative MARL benchmarks.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2681

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


We demonstrate this by incorporating the HetGPPO algorithm [4]
which utilizes a GNN to aggregate observations for policy learning.

Extensive Validation and Robustness: We validate CoHet in
the presence of heterogeneous agents in six different scenarios in
the MPE [15] and VMAS [3] benchmarks, showing superior perfor-
mance. In the full version of our paper, we also present findings on
the impact of agent dynamics models on the intrinsic reward calcu-
lation, compare the two variants of the algorithm, and demonstrate
its robustness to an increasing number of heterogeneous agents in
a shared environment.

2 THE COHET ALGORITHM
CoHet is designed to improve decentralized cooperation among
heterogeneous agents under sparse reward and partially observable
scenarios. It integrates a GNN to aggregate local observations, en-
suring geometric translation invariance by leveraging non-absolute
features as node embeddings. Each agent collects only its locally ac-
cessible neighborhood observations, aggregates them, and utilizes
GNN-learned node embeddings to calculate intrinsic rewards based
on these aggregated local information. A forward dynamics model
(Equation 2) is trained for each agent at regular intervals to predict
the next observations based on current observations and actions. As
shown in Equation 3, intrinsic rewards are computed by measuring
the misalignment between an agent’s predicted (computed using
the forward dynamics model 𝑓𝜃 ) and ground truth next aggregated
neighborhood observations, with the misalignment penalized to
encourage agents to refine their behavior to align better with their
neighbors’ predictions. These intrinsic rewards are weighted using
Euclidean distances (Equation 1), prioritizing the influence of closer
agents, and are combined with sparse extrinsic rewards to generate
a dense reward signal for policy optimization.

𝑤 𝑗 =
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CoHet introduces two key variants: CoHetteam and CoHetself. In
CoHetteam, each agent shares its predictions of the next observa-
tions with its neighbors at the next time step, and agents learn to
align their behaviors to minimize discrepancies between predicted
and actual observations, fostering coordination at the team level.
In contrast, CoHetself focuses solely on self-alignment, where each
agent uses its own dynamicsmodel to predict its future observations
and optimizes behavior accordingly, leading to more independent
decision-making at the cost of inter-agent collaboration. By lever-
aging local communication and prediction-based intrinsic rewards,
CoHet enhances decentralized coordination without requiring cen-
tralized training, making it well-suited for complex multi-agent
tasks with heterogeneity, sparse rewards, and partial observability.
A more detailed and formal description of the CoHet algorithm is
in the full version of our paper.

3 RESULTS
We demonstrate that both variants of CoHet (CoHetteam, CoHetself)
outperform the state-of-the-art decentralized heterogeneous MARL
policy learning algorithm HetGPPO in each of the tasks evaluated
on widely used VMAS and MPE benchmarks. The incorporation
of the CoHet intrinsic reward module leads to the learning of col-
laborative behaviors among heterogeneous agents, evidenced by
the improved performance over the baseline in these cooperative
MARL tasks. We additionally compare CoHet with the SOTAMARL
baseline, IPPO (Independent Proximal Policy Optimization), which
is applicable in decentralized training settings for heterogeneous
agents under partial observability similar to HetGPPO. Unlike the
centralized critic-based heterogeneous policy learning approaches
and widely used algorithms such as MADDPG [15], MAPPO [21],
and COMA [7], these baselines along with CoHet address the more
challenging problem of not relying on any centralized controller or
prior knowledge of agent heterogeneity, but rather learning from
only the locally observable information available to the diverse
set of agents. As a result, to maintain uniform assumptions across
methods, we show comparisons with the existing decentralized
heterogeneous algorithms that operate under similar constraints.
Furthermore, in our full paper, we analyze how each agent learns
the dynamics model as time progresses and how it reduces the
intrinsic reward penalty for misalignment. We compare the two
variants of CoHet, analyze their performance, and demonstrate that
the CoHetteam variant is robust to an increasing number of hetero-
geneous agents in the shared environment, an issue encountered
in previous methods [16].

Table 1: Mean Episodic Reward of CoHet variants vs. state-of-
the-art baselines after 2× 105 environment steps. Both CoHet
variants simultaneously outperform the HetGPPO baseline
in each task and outperform Independent PPO (IPPO) in four
out of six tasks that require inter-agent cooperation

Scenario IPPO HetGPPO CoHetteam CoHetself
Flocking -0.73 -0.49 0.41 0.28
Navigation 2.93 0.75 1.97 1.80
Rev. Trans. 7.92 0.96 5.27 5.13
Sampling 26.13 17.81 34.86 31.75
Sim. Spread -528.98 -701.15 -477.73 -390.18
Joint Pass. -112.47 -55.10 -2.73 -9.11

4 DISCUSSION AND FUTUREWORK
We demonstrate that the GNN-based local neighborhood observa-
tion aggregation effectivelymodels the neighborhood heterogeneity
required for calculating prediction-based self-supervised intrinsic
rewards. Future research can explore alternative intrinsic reward
mechanisms (e.g. curiosity-driven, novelty-based) within decen-
tralized heterogeneous MARL. Balancing intrinsic and extrinsic
rewards remains an open challenge, and future work could inves-
tigate adaptive weighting mechanisms that prioritize agents with
aligned sub-goals and heterogeneity types. Ultimately, we opine
that future work on MARL cooperation should take the need for
decentralized training and agent heterogeneity into account.
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