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ABSTRACT
Potential-based reward shaping is often used to incorporate prior
knowledge of how to solve the task into reinforcement learning
because it can formally guarantee policy invariance. In this work,
we highlight the dependence of effective potential-based reward
shaping on the initial Q-values and external rewards, which deter-
mine the agent’s ability to exploit the shaping rewards to guide its
exploration and achieve increased sample efficiency. We formally
derive how a simple linear shift of the potential function can be
used to improve the effectiveness of reward shaping without chang-
ing the structure of the potential function and thus its implicitly
encoded preferences, and without having to adjust the initial Q-
values. We verify our theoretical findings on tabular Q-learning and
demonstrate the application of our findings in deep reinforcement
learning.
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1 INTRODUCTION
Reward shaping is a common approach to accelerate the conver-
gence of reinforcement learning agents by incorporating external
guidance into the reward function, thereby improving the explo-
ration of the environment.

In this work, we focus on potential-based reward shaping [9]. The
primary appeal of potential-based reward shaping is the guarantee
of policy invariance. Despite the change in rewards following the
reward shaping, the optimal policy given the shaped reward func-
tion remains identical to that of the original MDP. Potential-based
reward shaping utilizes a potential function to assign a heuristic
value of goodness (or potential) to each state, with the reward shap-
ing subsequently derived from the difference between the potential
of the states before and after the execution of an action.
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Previous theoretical evaluations of potential-based reward shap-
ing have given pointers of how to structure an effective potential
function [2, 3], but have not included the intrinsic link between the
reward and the Q-value initialization. While potential-based reward
shaping has been shown to be equivalent to shifting the Q-value
initialization by adding the potential function [10], previous work
has not addressed the impact of the Q-value initialization on the
sample efficiency in potential-based reward shaping and how to
optimize a potential function for a given Q-value initialization to
improve sample efficiency.

Notably, potential-based reward shaping does not alter the op-
timal policy, and our method does not change the preferences en-
coded in the potential function. Consequently, our approach is
applicable in any situation where additional (possibly approximate)
knowledge of the MDP can be exploited for more sample-efficient
reinforcement learning.

In summary, the primary contributions of this paper are:
(1) We introduce a generalized framework of requirements for

an effective potential-based reward shaping.
(2) We explore how to choose the scale and offset for potential

functions to adapt the potential function to a given Q-value
initialization and reward function, thus improving the effec-
tiveness of reward shaping.

(3) We verify our findings empirically first on tabular RL, and
then extend our experiments to the deep RL setting.

2 EFFECTIVE POTENTIAL-BASED REWARD
SHAPING

Potential-based reward shaping (PBRS) is defined by its potential
function Φ(𝑠) mapping each state to a heuristic scalar value. Given
the potential function, the reward shaping function 𝐹 is defined as:

𝐹 (𝑠, 𝑎, 𝑠′) = 𝛾Φ(𝑠′) − Φ(𝑠) (1)

where 𝑠′ is the state reached after executing action 𝑎 in 𝑠 and 𝛾 is
the discount factor. The shaped reward 𝑅′ can then be defined as:

𝑅′ (𝑠, 𝑎, 𝑠′) = 𝑅(𝑠, 𝑎, 𝑠′) + 𝐹 (𝑠, 𝑎, 𝑠′) (2)

We focus on sparse reward functions that offer little (intermedi-
ate) feedback to the exploration strategy of the agent, thus being
inherently difficult to solve efficiently. We adopt the reward for-
mulation of Matignon et al. [4] for goal-directed reward functions
with a goal state 𝑠𝑔 :

𝑅(𝑠, 𝑎, 𝑠′) =
{
𝑟𝑔 if 𝑠′ = 𝑠𝑔

𝑟∞ otherwise
(3)
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The goal for an effective application of PBRS is for the agent to
initially exploit the potential function to guide its exploration at
the start of the training. As such, our theoretical results will focus
on the first updates of the initial estimates.

The following set of requirements for the relation of the shaped
rewards to the initial Q-values is an extension of the requirements
proposed in Grzes and Kudenko [3] to include the relation between
TD-updates and initial Q-values focusing on non-terminal transi-
tions between the states 𝑠 and 𝑠′ with Φ(𝑠′) > Φ(𝑠):

𝑟∞ + 𝛾Φ(𝑠′) − Φ(𝑠) > (1 − 𝛾)𝑄𝑖𝑛𝑖𝑡 (4)
𝑟∞ + 𝛾Φ(𝑠) − Φ(𝑠′) < (1 − 𝛾)𝑄𝑖𝑛𝑖𝑡 (5)
𝑟∞ + 𝛾Φ(𝑠) − Φ(𝑠) ≤ (1 − 𝛾)𝑄𝑖𝑛𝑖𝑡 (6)

Only transitions that lead to states with a higher potential value
should be incentivized. Other transitions should be disincentivized
initially. As a result, any of the commonly used advantage-based ac-
tion selection schemes would repeat actions that lead to the largest
possible next potential value while avoiding to repeatedly explore
actions that lead to states with lower potential values. Extended
versions of the proofs can be found in Müller and Kudenko [8].

2.1 Potential Scale
As a direct result of the requirement of potential values of zero in
terminal states [2], we can obtain upper and lower bounds on the
scale of the potential function in goal-directed MDPs:

𝑟∞ − (1 − 𝛾)𝑄𝑖𝑛𝑖𝑡 < Φ(𝑠) < 𝑟𝑔 − (1 − 𝛾)𝑄𝑖𝑛𝑖𝑡 (7)

As a direct result of these bounds, it is not possible to utilize
the scale of the potential function to compensate the mismatch
between the original rewards and the initial Q-values, and thus
satisfying the general requirements outlined in equations 4-6.

Notably, equation 7 implicitly requires that 𝑟𝑔 > 𝑟∞. Accordingly,
the incentive to terminate in a goal state must originate from the
reward of a goal-directed MDP not from the reward shaping.

2.2 Potential Shift
The equations 4 to 6 show, that the effectiveness of PBRS depends
on the external reward and the initial Q-values. If the initial Q-
values and the (constant) rewards are known, one can add a simple
bias to the potential function to remove the dependence. We define
the shifted potential function for any non-terminal state 𝑠 as:

Φ𝑏 (𝑠) = Φ(𝑠) + 𝑏

𝛾 − 1
(8)

This constant bias term shifts all rewards (except when moving
into terminal states) by 𝑏. If we set 𝑏 = (1 − 𝛾)𝑄𝑖𝑛𝑖𝑡 − 𝑟∞, we are
able to remove the dependence on both the external reward and
the initial Q-values. This allows us to make direct use of the prior
results on how to create an effective PBRS [3, 7].

This shift of the potential values has to exclude the potential
values for terminal states as the potential of any terminating state
has to be zero [2]. For transitions into terminal states the additional
term in the shaped reward is𝑄𝑖𝑛𝑖𝑡+ 𝑟∞

𝛾−1 . The benefit of removing 𝑟∞
and𝑄𝑖𝑛𝑖𝑡 in the requirements for non-terminal transitions therefore
can come at the cost of incorrectly (dis-)incentivizing transitions
into terminal states.

3 EXPERIMENTS
Our experiments show that our theoretical results hold exactly for
tabular Q-learning in a simple Gridworld environment with both a
goal-directed reward function (only non-zero reward at goal) and
a on-step reward function (same negative reward per step). The
optimal bias value leads to rapid convergence while incorrect bias
values lead to non-convergence within the training budget.

We further extend our results to deep RL exemplarily using DQN
[5]. In the Cart Pole environment [1], experiments tested the impact
of bias selection when using function approximation in deep RL
using the pole’s angle as potential function. Results showed that
biases 𝑏 ≥ 0 allowed the agent to leverage the potential function
effectively, resulting in faster convergence to a better policy com-
pared to training without reward shaping. Bias values 𝑏 < 0 led to
deteriorating performance, with evaluation scores remaining near
zero. In the Mountain Car environment [6], experiments tested
potential-based reward shaping using the car’s absolute velocity as
the potential function. Results showed that only biases of 0 and 1
reliably led to solving the task, with a bias of 1 producing the best-
performing policies by effectively compensating for the constant
negative on-step rewards.

Importantly, while the choice of exact bias values mattered less
in the function approximation experiments, the results confirm
the applicability of the bias-shifting theory in deep RL. In contrast
to the experiments on the tabular Gridworld environment, the
incorrect reward incentives when transitioning into terminal states
for uniform reward functions do not lead to increasing variance
between runs as highlighted in Figure 1.

(a) Cart Pole (b) Mountain Car

Figure 1: Results of Cart Pole and Mountain Car for different
values of the bias 𝑏 plotting the mean episode length and
standard error of the mean over ten independent runs.

4 CONCLUSION
We have introduced a framework of requirements for effective
potential-based reward shaping and have shown that a constant
shift of the potential function can help alleviate problems caused
by a mismatch between the original reward and initial Q-values.
We empirically verified that this approach also holds for function
approximation in deep RL.
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