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ABSTRACT
To integrate into human-centered environments, autonomous agents
must learn from and adapt to humans in their native settings.
Preference-based reinforcement learning (PbRL) can enable this
by learning reward functions from human preferences. However,
humans live in a world full of diverse information, most of which
is irrelevant to completing any particular task. It then becomes
essential that agents learn to focus on the subset of task-relevant
state features. To that end, this work proposes R2N (Robust-to-
Noise), the first PbRL algorithm that leverages principles of dy-
namic sparse training to learn robust reward models that can focus
on task-relevant features. In experiments with a simulated teacher,
we demonstrate that R2N can adapt the sparse connectivity of
its neural networks to focus on task-relevant features, enabling
R2N to significantly outperform several sparse training and PbRL
algorithms across simulated robotic environments.
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1 INTRODUCTION
Recent advances in reinforcement learning (RL) are bringing us
closer to a future in which RL agents aid humans in their daily
lives [3, 5, 12]. Preference-based RL (PbRL) is a promising paradigm
that allows RL agents to leverage human preferences to adapt their
behavior to better align with human intentions [2, 7, 10]. However,
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to effectively integrate agents into human-centered environments,
autonomous agents should be able to learn from humans in their
natural settings. Unfortunately, human environments are inher-
ently noisy. For example, suppose a household robot is tasked with
learning to clean a toy room and a human provides the robot with
preferences on how the room should be cleaned. In this scenario,
the robot might receive distracting information, such as the sounds
of children playing. Only a subset of the robot’s perceptions is rele-
vant to the task, and identifying this subset can boost performance.
To that end, we present R2N, a novel robust-to-noise PbRL algo-
rithm that leverages principles of dynamic sparse training (DST) to
learn robust reward models in extremely noisy environments. R2N
continually adjusts the network topology of both the reward model
and RL agent networks to focus on task-relevant features.

2 BACKGROUND
This work assumes an MDP\R setting, where access to the envi-
ronmental reward function is not provided. The goal is to learn a
good policy while simultaneously estimating a reward function, 𝑟𝜃 ,
from human preferences. PbRL considers trajectory segments 𝜎 ,
where each segment consists of a sequence of state-action pairs.
The teacher compares two segments, 𝜎0 and 𝜎1, assigning 𝑦 = 1
if 𝜎1 is preferred, 𝑦 = 0 if 𝜎0 is preferred, and 𝑦 = 0.5 if both are
equally preferred. As feedback is provided, it is stored as tuples
(𝜎0, 𝜎1, 𝑦) in a dataset. Then, we follow the Bradley-Terry model
[1] to define a preference predictor 𝑃𝜃 using the reward function
estimator, 𝑟𝜃 . Intuitively, if segment 𝜎𝑖 is preferred over segment
𝜎 𝑗 , then the cumulative predicted reward (under 𝑟𝜃 ) for 𝜎𝑖 should
be greater than for 𝜎 𝑗 . To train the reward function, we can use
supervised learning where the teacher provides the labels 𝑦. We
can then update 𝑟𝜃 by minimizing the binary cross-entropy objec-
tive. The learned reward function, 𝑟𝜃 , is then used in place of the
environmental reward function in the typical RL interaction loop.

3 ROBUST-TO-NOISE PBRL
The goal of R2N is to learn reward functions from feedback in
environments with many task-irrelevant features. To achieve this,
R2N applies DST techniques to PbRL algorithms to enable the
learned reward model to focus on relevant features. R2N consists
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(a) Walker-walk, Noise Fraction = 0.90
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(b) Cheetah-run, Noise Fraction = 0.90
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(c) Humanoid-stand, Noise Fraction = 0.70

(d) Walker-walk, Noise Fraction = 0.90 (e) Cheetah-run, Noise Fraction = 0.90 (f) Humanoid-stand, Noise Fraction = 0.70

Figure 1: Learning curves comparing R2N against various PbRL algorithms (top row) and sparse training methods (bottom row).

of two primary steps. First, at initialization, R2N randomly prunes
the input layer of the reward model to a pre-defined sparsity level
𝑠𝑅 . This is important, as prior works have shown that sparse neural
networks can outperform their dense counterparts in both the
supervised learning and RL settings [4, 9, 14]. Second, after every
Δ𝑇𝑅 weight updates in the training loop, we prune the weakest
active connections in the reward model’s input layer. The strength
of a connection is defined by the absolute value of its weight. After
dropping a fraction 𝑑𝑅

𝑓
∈ (0, 1) of active connections, R2N regrows

an equal number in new locations, maintaining a consistent sparsity
level throughout training. To choose which inactive connections
to grow, we use RigL [4], which activates connections with the
highest gradient magnitude. We also apply the DST procedure, SET
[9], to the input layers of the actor and critic networks in the RL
agent, following a noise-filtering algorithm for standard RL [6].

4 EXPERIMENTS
We consider the Extremely Noisy Environment (ENE) [6], where
noise is treated as a distracting feature in the environment. Specifi-
cally, the state space is expanded such that a fraction 𝑛𝑓 ∈ [0, 1)
of the total state space consists of noise features. The PbRL algo-
rithms must identify the most relevant features to (1) learn a robust
reward function and (2) learn an adequate policy. We evaluate R2N
in three DMControl environments [15]: Walker-walk, Cheetah-run,
and Humanoid-stand. To assess its effectiveness, we compare R2N
against four sparse training baselines: SET [9], Static Sparse Train-
ing, L1 Regularization [11], and DropConnect [16], each integrated

into the reward learning module of the PbRL algorithm PEBBLE
[7]. To further examine R2N’s applicability across diverse PbRL
algorithms, we integrate it with two additional approaches: SURF
[13] and RUNE [8]. For PbRL baselines, we use a simulated teacher
that provides preferences between trajectory segments based on
the ground truth reward function. We train all algorithms for 1
million timesteps and evaluate performance every 5000 timesteps.
Evaluation is based on the average offline performance over ten
episodes using the ground truth reward function. Results are av-
eraged over 14 or 5 seeds (Figure 1—top and bottom, respectively),
with shaded regions representing the standard error.

In all environments, R2N-PEBBLE is the only algorithm that
consistently achieves superior performance. Furthermore, in Figure
1 - top, the addition of R2N significantly improves both the learning
efficiency and final return of the base PbRL algorithm. In Figure 1 -
bottom, R2N-PEBBLE significantly outperforms L1-Regularization
and DropConnect in learning efficiency. While Static-PEBBLE and
SET-PEBBLE are more competitive, R2N maintains a performance
advantage in Humanoid-stand and Cheetah-run.
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