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ABSTRACT
In this paper, we present the first sublinear 𝛼-regret bounds for on-
line 𝑘-submodular optimization problems with full-bandit feedback,
where 𝛼 is a corresponding offline approximation ratio. Specif-
ically, we propose online algorithms for multiple 𝑘-submodular
stochastic combinatorial multi-armed bandit problems, including (i)
monotone functions and individual size constraints, (ii) monotone
functions with matroid constraints, (iii) non-monotone functions
with matroid constraints, (iv) non-monotone functions without
constraints, and (v) monotone functions without constraints. We
transform approximation algorithms for offline 𝑘-submodular max-
imization problems into online algorithms through the offline-to-
online framework proposed by [9]. A key contribution of our work
is analyzing the robustness of the offline algorithms.

KEYWORDS
𝑘-submodular; multi-armed bandits; bandit feedback

ACM Reference Format:
Guanyu Nie, Vaneet Aggarwal, and Christopher John Quinn. 2025. Stochas-
tic 𝑘-Submodular Bandits with Full Bandit Feedback: Extended Abstract. In
Proc. of the 24th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025,
IFAAMAS, 3 pages.

1 INTRODUCTION
In sequential decision-making problems like sensor placement and
influence maximization, decisions involve selecting subsets of ele-
ments, making assignments, and observing outcomes. These prob-
lems often exhibit diminishing returns. For example, in a multi-
agent social network content-spreading scenario, multiple compa-
nies cooperate to spread 𝑘 types of content. The more influencers
each company sponsors, the (marginal) increase in diffusion size
due to any particular influencer will diminish.

The offline version of such problems can bemodeled as𝑘-submodular
optimization problems [2]. However, maximizing a 𝑘-submodular
function is NP-hard [16]. There has been progress in offline approx-
imation algorithms [3, 10, 11]. The online version can be modeled
as a stochastic combinatorial multi-armed bandit (CMAB) problem
with 𝑘-submodular expected rewards, constraints, and bandit feed-
back. We address the CMAB problem with (only) bandit feedback.
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Our Contributions: We propose and analyze the first CMAB
algorithms with sub-linear 𝛼-regret for 𝑘-submodular expected
rewards using full-bandit feedback. For different scenarios (non-
monotone and monotone functions, with and without constraints),
we achieve sub-linear regret bounds by analyzing the robustness of
offline algorithms. The detailed results are summarized in Table 1,
where the right side of the vertical line is obtained from our analysis.

Related Works: For 𝑘-submodular CMAB, [12] considered un-
constrained problems under semi-bandit feedback in an adversarial
setting. For submodular CMAB (𝑘 = 1), there are algorithms for
full-bandit feedback and different constraints [1, 4, 7–9, 13]. Many
works rely on additional “semi-bandit” feedback [6, 15, 17, 18], but
we focus on full-bandit feedback.

Table 1: Summary of offline 𝛼-approximation algorithms
for 𝑘-submodular maximization with our 𝛿-robustness anal-
ysis and 𝛼-regret bounds for our proposed algorithms for
𝑘-submodular CMAB with full-bandit feedback. 𝑁 is an up-
per bound on the query complexity of the offline algorithm.
𝐵 is the total budget.𝑀 is the rank of the matriod.

Ref. Mono. Constraint 𝛼 𝛿 𝑁 Our 𝛼-regret

[3] × Unconstr. 1/2 20𝑛 𝑛𝑘 Õ (𝑛𝑘
1
3𝑇

2
3 )

[3] ✓ Unconstr. 𝑘/(2𝑘 − 1) (16 − 2
𝑘
)𝑛 𝑛𝑘 Õ (𝑛𝑘

1
3𝑇

2
3 )

[10] ✓ Total Size 1/2 𝐵 + 1 𝑛𝑘𝐵 Õ (𝑛
1
3 𝑘

1
3 𝐵𝑇

2
3 )

[14] × Total Size 1/3 4/3(𝐵 + 1) 𝑛𝑘𝐵 Õ (𝑛
1
3 𝑘

1
3 𝐵𝑇

2
3 )

[10] ✓ Indiv. Size 1/3 4/3(𝐵 + 1) 𝑛𝑘𝐵 Õ (𝑛
1
3 𝑘

1
3 𝐵𝑇

2
3 )

[11] ✓ Matroid 1/2 𝑀 + 1 𝑛𝑘𝑀 Õ (𝑛
1
3 𝑘

1
3𝑀𝑇

2
3 )

[14] × Matroid 1/3 4/3(𝑀 + 1) 𝑛𝑘𝑀 Õ (𝑛
1
3 𝑘

1
3𝑀𝑇

2
3 )

2 PRELIMINARIES
𝑘-Submodular Functions. Let 𝑘 be a positive integer for the

number of types (i.e., types of stories) and 𝑉 = [𝑛] be the ground
set of elements (i.e., users in a social network). Let (𝑘 + 1)𝑉 :=
{(𝑋1, . . . , 𝑋𝑘 ) |𝑋𝑖 ⊆ 𝑉 , 𝑖 ∈ {1, . . . , 𝑘}, 𝑋𝑖 ∩ 𝑋 𝑗 = ∅,∀𝑖 ≠ 𝑗}. A func-
tion 𝑓 : (𝑘 + 1)𝑉 → R is called 𝑘-submodular if, for any 𝒙 =

(𝑋1, . . . , 𝑋𝑘 ) and𝒚 = (𝑌1, . . . , 𝑌𝑘 ) in (𝑘+1)𝑉 , we have 𝑓 (𝒙)+𝑓 (𝒚) ≥
𝑓 (𝒙 ⊔𝒚) + 𝑓 (𝒙 ⊓𝒚) where 𝒙 ⊓𝒚 := (𝑋1 ∩𝑌1, . . . , 𝑋𝑘 ∩𝑌𝑘 ), 𝒙 ⊔𝒚 :=
(𝑋1 ∪ 𝑌1 \ (∪𝑖≠1𝑋𝑖 ∪ 𝑌𝑖 ), . . . , 𝑋𝑘 ∪ 𝑌𝑘 \ (∪𝑖≠𝑘𝑋𝑖 ∪ 𝑌𝑖 )). Define the
marginal gain of assigning type 𝑖 ∈ [𝑘] to element 𝑒 given a cur-
rent solution 𝒙 (provided 𝑒 has not been assigned any type in 𝒙),
Δ𝑒,𝑖 𝑓 (𝒙) = 𝑓 (𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖 ∪ {𝑒}, 𝑋𝑖+1, . . . , 𝑋𝑘 ) − 𝑓 (𝑋1, . . . , 𝑋𝑘 ) .
A 𝑘-submodular function satisfies orthant submodularity and pair-
wise monotonicity [16]. A function 𝑓 : (𝑘 + 1)𝑉 → R is monotone if
Δ𝑒,𝑖 𝑓 (𝒙) ≥ 0 for any 𝒙 ∈ (𝑘 + 1)𝑉 , 𝑒 ∉ ⋃

ℓ∈[𝑘 ] 𝑋ℓ , and 𝑖 ∈ [𝑘].
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CMAB. In the CMAB framework, a learner makes sequential
decisions over time horizon𝑇 . At each step 𝑡 , a feasible action (sub-
set of the ground set) 𝐴𝑡 is selected, and a stochastic reward 𝑓𝑡 (𝐴𝑡 )
is received. The goal is to maximize the cumulative reward. When
the analogous offline optimization problem is NP-hard, and there
is a known 𝛼-approximation algorithm, performance is measured
by expected cumulative 𝛼-regret,

E[R𝑇 ] = 𝛼𝑇 𝑓 (OPT) − E
[
𝑇∑︁
𝑡=1

𝑓𝑡 (𝐴𝑡 )
]
. (1)

Problem Statement. We consider the stochastic CMAB problem
where the expected reward function is 𝑘-submodular. Each arm is
an item-type pair, and we only have full-bandit feedback. We aim to
transform offline 𝑘-submodular optimization algorithms to online
algorithms and use expected 𝛼-regret as the performance metric.

Offline-to-Online Framework. We adopt the offline-to-online
transformation framework proposed in [9]. In [9], they introduced
(𝛼, 𝛿, 𝑁 )-robustness of an offline approximation algorithm (see Def-
inition 1 below). They showed that this property alone is suffi-
cient to guarantee that the offline algorithm can be adapted to
solve CMAB problems in the corresponding online setting with
just bandit feedback and achieve sub-linear regret. Specifically,
they showed that the expected cumulative 𝛼-regret of C-ETC is at
mostO

(
𝛿

2
3𝑁

1
3𝑇

2
3 log(𝑇 )

1
3
)
with𝑇 ≥ max

{
𝑁,

2
√
2𝑁
𝛿

}
. More impor-

tantly, the CMAB adaptation will not rely on any special structure
of the algorithm design, instead employing it as a black box. We
restate the robustness definition in the following.

Definition 1 ((𝛼, 𝛿, 𝑁 )-Robust Approximation [9]). Algorithm A
is an (𝛼, 𝛿, 𝑁 )-robust approximation algorithm for the combinato-
rial optimization problem of maximizing a function 𝑓 : 2Ω → R
over a finite domain 𝐷 ⊆ 2Ω if its output 𝑆∗ using a value oracle
𝑓 , provided that for any 𝜖 > 0, |𝑓 (𝑆) − 𝑓 (𝑆) | ≤ 𝜖 for all 𝑆 ∈ 𝐷 ,
satisfies E[𝑓 (𝑆∗)] ≥ 𝛼 𝑓 (OPT) − 𝛿𝜖, where OPT is optimal under
𝑓 , Ω is the ground set, the expectation is over the randomness of
A, and algorithm A uses at most 𝑁 value oracle queries.

3 MAIN RESULTS
Non-monotone Functions without Constraints: We adopt the
offline algorithm proposed in [3]. We first show that the Algo-
rithm 2 in [3] is ( 12 , 20𝑛, 𝑛𝑘)-robust. Then, by the C-ETC frame-
work, we obtain the expected cumulative 1/2-regret bound of
O

(
𝑛𝑘

1
3𝑇

2
3 log(𝑇 )

1
3
)
given 𝑇 ≥ 𝑛𝑘 .

Monotone Functions without Constraints: We use Algo-
rithm 3 in [3]. In the original algorithm, it was stated as 𝛽 ←∑𝑘
𝑖=1 𝑦

𝑡
𝑖
. This particular step is not robust to noise and we showed

it can be changed to 𝛽 ← ∑𝑘
𝑖=1 [𝑦𝑖 ]𝑡+ to yield a (

𝑘
2𝑘−1 , (16−

2
𝑘
)𝑛, 𝑛𝑘)-

robustness guarantee. By the C-ETC framework, we obtain the ex-
pected cumulative 𝑘

2𝑘−1 -regret bound of O
(
𝑛𝑘

1
3𝑇

2
3 log(𝑇 )

1
3
)
given

𝑇 ≥ max{𝑛𝑘, 2
√
2𝑘

16− 2
𝑘

}.
Monotone Functions with Individual Size (IS) Constraints:

In IS, each type 𝑖 has a limit 𝐵𝑖 on the maximum number of pairs
of that type 𝑖 , with 𝐵 =

∑
𝑖 𝐵𝑖 as the total budget. We consider the

offline greedy Algorithm 3 proposed in [10]. We first show that

Figure 1: Instantaneous Rewards on Influence Maximization
experiments.

Algorithm 3 in [10] is ( 13 ,
4
3 (𝐵+1), 𝑛𝑘𝐵)-robust. Then, by the C-ETC

framework, we obtain the expected cumulative 1/3-regret bound
of O

(
𝑛

1
3 𝑘

1
3 𝐵𝑇

2
3 log(𝑇 )

1
3
)
given 𝑇 ≥ 𝑛𝑘 max{1, 3

√
2𝐵

2(𝐵+1) }.
Monotone Functions with Matroid Constraints: We adapt

Algorithm 3.1 in [11]. We first show that Algorithm 3.1 in [11] is
( 12 , 𝑀 + 1, 𝑛𝑘𝑀)-robust, where𝑀 is the rank of the matriod. Apply-
ing the C-ETC framework, we obtain the expected cumulative 1/2-
regret bound ofO

(
𝑛

1
3 𝑘

1
3𝑀𝑇

2
3 log(𝑇 )

1
3
)
given𝑇 ≥ 𝑛𝑘 max{1, 3

√
2𝑀

2(𝑀+1) }.
As a special case of the matroid constraint, we can obtain a similar
regret bound for the Total Size (TS) constraint [10].

Non-monotone Functions with Matroid Constraints: The
proposed algorithm in [14] is shown to achieve a 1/3 approxi-
mation ratio. We show that the algorithm is ( 13 ,

4
3 (𝑀 + 1), 𝑛𝑘𝑀)-

robust. Using C-ETC, the expected cumulative 1/3-regret bound is
O

(
𝑛

1
3 𝑘

1
3𝑀𝑇

2
3 log(𝑇 )

1
3
)
given 𝑇 ≥ 𝑛𝑘 max{1, 3

√
2𝑀

2(𝑀+1) }.

4 EVALUATIONS
We evaluate our methods in the context of online influence max-
imization with 𝑘 = 3 topics. We used the the 𝑘-topic independent
cascade (𝑘-IC) model from Ohsaka and Yoshida [10] on a subgraph
with 350 users and 2,845 edges of the ego-Facebook network [5].
We evaluate our algorithms under both TS (budget 𝐵 = 6) and IS
(each topic has a budget of 2) constraints for a horizon of 𝑇 = 104.

Instantaneous reward plots are shown in Figure 1. Means and
standard deviations are calculated over 10 independent runs. We
compare with NaiveUCB and random selection. The results show
that our algorithm (ETCG) catches up in later stages and achieves
lower cumulative regret, while NaiveUCB has a poor performance
due to the large number of actions to explore.

5 CONCLUSION
We investigated online 𝑘-submodular maximization under bandit
feedback. We proposed CMAB algorithms by adapting offline algo-
rithms and analyzing their robustness, obtaining sublinear regret
bounds in various settings. Numerical experiments verified the ef-
fectiveness of our methods. Future work could focus on further
improving the regret bounds and more complex scenarios.
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