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ABSTRACT

Understanding the formation and evolution of opinions is of broad

interdisciplinary interest. Many classical models for opinion forma-

tion focus on the impact of different notions of locality, e.g., locality

due to network effects among agents or the role of the proximity of

opinions. In practice, however, opinion formation is often governed

by the interplay of local and global influences.

In this paper, we study an asynchronous opinion dynamics in a

social network. Each agent has a static intrinsic opinion as well as a

public opinion that is updated asynchronously over time. Moreover,

agents have access to a global aggregate (e.g., the outcome of a vote)

of all public opinions. We focus on the popular median voting rule

and show that pure Nash equilibria always exist. For every initial

state of the dynamics, a pure equilibrium can be reached. The set of

reachable equilibria forms a complete lattice, and extremal equilib-

ria can be computed in polynomial time. Indeed, there are instances

and initial states from which the number of reachable equilibria is

exponentially large. The global median in these equilibria can be

any of the initial opinions.

We show that by uniformly increasing the influence of the aggre-

gate median we can enforce that the median opinion is the same in

every reachable equilibrium. We can compute the increase scheme

that achieves this property in polynomial time. Furthermore, we

show that finding the 𝑘 most influential agents is NP-complete.
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1 INTRODUCTION

Opinion formation processes [27, 28, 40] model how individuals

develop, modify and express opinions in a social context. Opinion

formation is highly influenced by various factors, including the

social environment, domain experts, or professionals for PR and

advertising. Such processes play a crucial role in public discourse,

decision-making, and collective behavior [35, 47, 48]. They decide

the outcome of elections and the fate of political parties, the success

of new products, companies, and entire economies; they influence

whether political movements are successful, and they lead to new

trends and directions in research and development. Understanding

how opinions are formed is essential for promoting constructive

dialogue, managing conflicts, and designing effective communica-

tion strategies. Research on opinion formation processes, therefore,

sheds light on the emergence of collective phenomena, such as

public opinion shifts [47], social movements [38], and the spread of

misinformation [23]. Understanding the formation and evolution of

opinions is of broad interdisciplinary interest, including research in

sociology, economics, mathematics, physics, and computer science.

Many classical models for opinion formation focus on the impact

of social network effects (such as, e.g., Friedkin-Johnsen [34] or

voter models [37]) or the role of the proximity of opinions (such as,

e.g., Deffuant-Weisbuch [21] or Hegselmann-Krause [36]). These

models introduce notions like locality between agents or distance

between opinions. In practice, however, opinion formation is often

governed by the interplay of local and global influences. Agents are

exposed to the opinions of their friends, but they also have access to

public opinion polls, media reports, research studies or other forms

of aggregated information about the global opinion landscape.

In this paper our goal is to shed light on the interplay between

global and local aspects of opinion dynamics. We study an agent-

based opinion formation process on a static social network graph

𝐺 = (𝑉 , 𝐸). Each agent 𝑖 ∈ 𝑉 has a (static) intrinsic opinion 𝑠𝑖 ∈ R
that they keep to themselves and a public opinion 𝑧𝑖 ∈ R that they

disclose to their neighbors in 𝐺 . In addition to these local opinions,

agents have access to a global aggregate opinion 𝑓 (𝒛) of the strategy
profile 𝒛, i.e., the vector 𝒛 of all agents’ public opinions. We assume

that agents update their public opinion in a sequential fashion. For

the choice of the public opinion 𝑧𝑖 , agent 𝑖 strives to strike a balance

between (1) their intrinsic opinion 𝑠𝑖 , (2) the public opinions 𝑧 𝑗 in

their local neighborhood 𝑁 (𝑖) = { 𝑗 | (𝑖, 𝑗) ∈ 𝐸}, and (3) the global

aggregate opinion 𝑓 (𝒛). Balance here means to minimize a cost

function comprising the distances between the public opinions,
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the intrinsic opinion, and the global aggregate opinion 𝑓 (𝒛). More

precisely, the cost function of agent 𝑖 is given by

cost𝑖 (𝒛) = 𝛼𝑖 |𝑠𝑖 − 𝑧𝑖 | +
∑︁

𝑗∈𝑁 (𝑖 )
𝛽𝑖 𝑗 |𝑧 𝑗 − 𝑧𝑖 | + 𝛾𝑖 |𝑓 (𝒛) − 𝑧𝑖 |.

with weights 𝛼𝑖 , 𝛽𝑖 𝑗 , and 𝛾𝑖 for each 𝑗 ∈ 𝑁 (𝑖). We focus on the

popular median voting rule 𝑓 (𝒛) = med(𝒛). Median voting has

many favorable properties, e.g., optimality properties, as well as

incentive compatibility for all agents [16, 41].

Filter bubbles [44] are a phenomenon known to occur in real-world

social networks. They describe the fact that algorithmic curation in

social networks disconnects users from information that disagrees

with their viewpoints. The resulting social media echo chambers [17]

are known to inhibit opinion exchange while amplifying extreme

views. Models for opinion formation that are solely based on the

locality of agents and the proximity of the opinions are known

to model this behavior, see, e.g., the prominent model by Hegsel-

mann and Krause [36]. Since the expressed opinions of individuals

in a modern society are not only influenced by their local peer

groups [42] but also subject to global influences, we assume in our

model that agents have access to a global aggregate of all opinions.

As our main contribution, we will show that the range and quality

of reachable equilibria depends crucially on the weight each agent

assigns to this global aggregate opinion. This implies that the me-

dian opinion in the society can be stabilized by giving agents access

to the global aggregate opinion, shattering filter bubbles, enriching

perspectives and promoting diverse discourse.

Overview of Results. Our first class of results shed light on the

structural properties of such opinion dynamics in networks. We

show that for any agent 𝑖 the cost function is minimized by choosing

the public opinion as a weighted median of their intrinsic opinion,

the public opinions of their neighbors, and the aggregate opinion.

We show that for any instance (defined by the network and the

intrinsic opinions), there exists a (pure Nash) equilibrium where no

agent can further reduce their costs. Moreover, for any instance and

an initial vector of public opinions, an equilibrium can be reached by

a sequence of best-response dynamics. The set of all such reachable

equilibria forms a complete lattice, i.e., there is a pointwise maximal

and a pointwise minimal reachable equilibrium. These equilibria

can be computed in polynomial time.

Our results highlight the impact of the order in which the agents

update their public opinion. We show that there exists a family of

instances in which any of the intrinsic opinions can become the final

median, depending on the order in which the agents are updated.

Furthermore, in this family, the number of reachable equilibria

is exponentially large in the number of opinions and agents, and

the update sequence of the agents is crucial to steer the process

towards one or another equilibrium. These results also show that

the dynamics can potentially terminate in many different equilibria

with fundamentally different aggregation outcomes.

Our second class of results shed light on the global influence

of the median rule on possible equilibria. We observe that the

range of reachable equilibria is decreasing as soon as the impact

of the median opinion increases. Here, increasing the impact of

the median opinion means that each component of the vector 𝜸 is

increased by an additive value 𝛿 . We show that for every instance

where the global median is not unique in all reachable equilibria,

there is a threshold 𝛿 such that the following observation holds:

if the median weight of all agents is increased by at least 𝛿 , then

the global median is the same in all reachable equilibria of the

modified instance. Additionally, we show that the threshold 𝛿 can

be computed efficiently.

We contrast this result with a different perspective on influencing

the global median. Instead of increasing 𝜸 for all agents by an

additive term 𝛿 , suppose we select 𝑘 agents to increase their median

weights. The decision problem StableMedian is whether for a

given 𝑘 there exists a set of 𝑘 agents such that each reachable

equilibrium has the same global median. We show it is NP-complete.

2 RELATEDWORK

The literature on opinion formation is vast. A comprehensive survey

is beyond the scope of this paper.We give a brief overview of models

that are commonly analyzed in the AI and multi-agent community.

For a large number of additional references we refer to [14].

Early works on modeling opinion formation include Downs [24],

Abelson and Bernstein [1], and DeGroot [22]. In their seminal

paper [34], Friedkin and Johnsen introduce a model of opinion

formation where each agent has an intrinsic opinion and a public

opinion. Agents update their public opinion based on their own

intrinsic opinion and the public opinions of their neighbors in a

social network graph. Co-evolutionary and game-theoretic variants

of this process are studied in [7, 8, 9, 26, 33], with a focus on the

existence of equilibria and their social quality, measured by the

price of anarchy.

Epitropou et al. [26] build upon the model by Friedkin and

Johnsen and study continuous opinion formation games with ag-

gregation aspects. They use the average public opinion to model

the interplay of global properties of the opinions in the society and

local influences and prove the existence of a unique equilibrium. As

their main contribution the authors prove that even with outdated

information about the average their model converges to the unique

equilibrium within distance 𝜀 > 0 after O(𝑛2
log(𝑛/𝜀)) synchro-

nous updates on the average. In addition, the authors bound the

price of anarchy of average-oriented opinion formation games.

Fanelli and Fotakis [31] analyze preference games with local

aggregation. They assume that agents have an innate preference and

a public strategy which is affected by the agents’ social neighbors.

At each agent, an aggregation function “summarizes” the opinions

of all agents. The authors provide a comprehensive set of general

results on the existence and the structure of equilibria and on the

price of anarchy of preference games with local aggregation.

Opinion formation processes are studied intensively in the AI

and multi-agent systems community. Auletta et al. [3] present a

co-evolutionary model, where the intrinsic opinion changes over

time. A substantial body of work considers opinion diffusion, the

spread of information and opinions among social networks [2, 10,

11, 13, 20, 30]. In particular, Bredereck et al. [12] study a process

where agents in a network have preference rankings over a set of

alternatives. Agents update their ranking sequentially by applying

an aggregation method to the rankings in their neighborhood. The

authors focus on single-peaked rankings and examine which ag-

gregation rules preserve this property. Moreover, Zhan et al. [50]
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analyze the impact of the network structure on the speed and extent

of opinion diffusion and Coates et al. [18, 19] present a framework

and a simulator for agent-based opinion formation processes.

Chazelle [15] shows that Hegselmann-Krause systems with syn-

chronous updates always converge to a stable state where no fur-

ther opinion changes are possible. A series of related works have

analyzed bounds on the time it takes until such a stable state is

reached [5, 29, 39, 46, 49]. Variants of the model restrict communica-

tion to a predefined social network [6, 43] or consider asynchronous

activation of agents [4, 32].

3 MODEL AND PRELIMINARIES

Amedian opinion game is a tuple G = (𝐺, 𝒔,𝜶 , 𝜷,𝜸 ). We are given a

set𝑉 of 𝑛 agents who are connected via a directed graph𝐺 = (𝑉 , 𝐸).
Each agent 𝑖 ∈ 𝑉 has an intrinsic opinion 𝑠𝑖 ∈ R. Moreover, each

agent can choose a public opinion 𝑧𝑖 ∈ R as a strategy. An individual
cost for agent 𝑖 is given by the weighted sum of distances to their

intrinsic opinion, the public opinions of their out-neighbors 𝑁 (𝑖),
and the median of public opinions med(𝒛):

cost𝑖 (𝒛) = 𝛼𝑖 |𝑠𝑖 − 𝑧𝑖 | +
∑︁

𝑗∈𝑁 (𝑖 )
𝛽𝑖 𝑗 |𝑧 𝑗 − 𝑧𝑖 | + 𝛾𝑖 | med(𝒛) − 𝑧𝑖 |.

All 𝛼𝑖 , 𝛾𝑖 , 𝛽𝑖 𝑗 ∈ N0 are constant and non-negative integers. 𝛽𝑖 𝑗
is defined as the weight of the edge (𝑖, 𝑗). In that case that all

𝛼1 = 𝛼2 = . . . = 𝛼𝑛 , 𝛾1 = 𝛾2 = . . . = 𝛾𝑛 , and 𝛽𝑖, 𝑗 = 𝛽𝑖′, 𝑗 ′ for all

(𝑖, 𝑗), (𝑖′, 𝑗 ′) ∈ 𝐸 we call the opinion game uniform. We assume that

the median function med(·) always refers to the lower median.

We consider opinion dynamics starting from any initial strategy

profile 𝒛. In each step, one agent 𝑖 is chosen, either randomly or

by an arbitrary deterministic rule. Agent 𝑖 updates their public

opinion to a best response 𝑧′
𝑖
∈ arg min𝑦∈R cost𝑖 (𝑦, 𝑧−𝑖 ), i.e., an

opinion that minimizes their cost function. Note that this choice

depends on med(𝑦, 𝑧−𝑖 ) rather than med(𝒛). Clearly, there might

be several best responses (see example directly after Definition 3.1).

We use 𝐵𝑖 (𝒛) = arg min𝑦∈R cost𝑖 (𝑦, 𝑧−𝑖 ) to denote the set of all

best responses for 𝑖 in 𝒛. We define best
−
𝑖 (𝒛) = min𝐵𝑖 (𝒛) and

best
+
𝑖 (𝒛) = max𝐵𝑖 (𝒛) as the smallest and largest best-response for

agent 𝑖 in profile 𝒛, respectively. For some of our results, we assume

that each agent chooses a best response that minimizes the distance

to their latest public opinion. We call this the lazy best-response

and denote it by best
𝑙
𝑖 (𝒛). Note that the intrinsic opinion of an agent

remains static.

In the following we characterize best-response strategies. First

we need the following definition.

Definition 3.1 (Weighted Median). Given a vector 𝒙 = (𝑥𝑖 )𝑖∈[𝑛]
with 𝑛 pairwise different values 𝑥𝑖 , and a vector𝒘 = (𝑤𝑖 )𝑖∈[𝑛] of
weights𝑤𝑖 ≥ 0, a value 𝑎 is called weighted median of (𝒙 ;𝒘) if∑︁

𝑗∈[𝑛]
𝑥 𝑗<𝑎

𝑤 𝑗 ≤
∥𝒘 ∥1

2

and

∑︁
𝑗∈[𝑛]
𝑥 𝑗>𝑎

𝑤 𝑗 ≤
∥𝒘 ∥1

2

.

Note that for each (𝒙 ;𝒘) there is at least one 𝑗 ∈ [𝑛] such that

𝑥 𝑗 is a weighted median. The weighted median is unique, except

if we have

∑𝑖∗
𝑗=1

𝑥 𝑗 = ∥𝒘 ∥1/2 for some value 𝑖∗ ∈ [𝑛 − 1], because
then each value 𝑎 ∈ [𝑥𝑖∗ , 𝑥𝑖∗+1] is a weighted median.

Proposition 3.2. A value 𝑧∗
𝑖
is a best response for agent 𝑖 against

𝑧−𝑖 if and only if it is a weighted median of

(𝑠𝑖 , 𝑧𝑁 (𝑖 ) ,med(𝑧∗𝑖 , 𝑧−𝑖 ); 𝛼𝑖 , 𝛽
𝑁 (𝑖 ) , 𝛾𝑖 ),

where 𝑧𝑁 (𝑖 )
is the vector of public opinions 𝑧 𝑗 of all neighbors 𝑗 ∈

𝑁 (𝑖) of agent 𝑖 and 𝛽𝑁 (𝑖 )
the corresponding vector of weights 𝛽𝑖 𝑗 for

all 𝑗 ∈ 𝑁 (𝑖).

Proof. Consider cost𝑖 (𝑧𝑖 , 𝑧−𝑖 ) as a function of 𝑧𝑖 . We show the

function represents a piecewise linear function that decreases until

the first weighted median is reached, stays constant until the last

weighted median is exceeded, and increases afterwards.

Let 𝑉 ′ = {𝑖} ∪ 𝑁 (𝑖), 𝑥 𝑗 = 𝑧 𝑗 , 𝑥𝑖 = 𝑠𝑖 , 𝑤𝑖 = 𝛼𝑖 , and 𝑤 𝑗 = 𝛽𝑖 𝑗 for

each 𝑗 ∈ 𝑁 (𝑖).
First, assume for simplicity that the weight 𝛾𝑖 of the median of

public opinions is zero and can therefore be ignored. If 𝑧𝑖 is strictly

smaller than the smallest weighted median, increasing 𝑧𝑖 results in

a linear cost reduction of the function, until the next value from

{𝑧 𝑗 | 𝑗 ∈ 𝑁 (𝑖)}∪ {𝑠𝑖 } is reached. The gradient of this linear function
is

∑
𝑗∈𝑉 ′

:𝑥 𝑗 ≤𝑧𝑖 𝑤 𝑗 −
∑

𝑗∈𝑉 ′
:𝑥 𝑗>𝑧𝑖 𝑤 𝑗 . Each time a value from {𝑧 𝑗 |

𝑗 ∈ 𝑁 (𝑖)} ∪ {𝑠𝑖 } is reached, the slope changes but remains negative

until the first weighted median is reached and turns positive only

after the last weighted median is passed.

Now if the median of public opinions has a weight strictly larger

than zero, the argument is slightly more complicated. The contri-

bution of the median of public opinions remains the same as long

as the public opinion of agent 𝑖 is strictly larger or strictly smaller

then the median. If 𝑧𝑖 is changed in the direction of the median,

then the cost due to the median decreases linearly until the median

is reached. At this point the public opinion of agent 𝑖 itself is the

median of public opinions. If 𝑧𝑖 is changed further in the same

direction, the cost contribution of the median remains at zero until

the value of the next opinion is reached and that value takes on the

role of the median. Afterwards, the cost contribution starts to grow

linearly again. Hence, the cost of agent 𝑖 depending on 𝑧𝑖 remains a

convex and piecewise linear function. The minima of this function

are exactly the weighted medians. □

Proposition 3.2 hasmany consequences. Best responses represent

a closed interval in R, i.e., 𝐵𝑖 (𝒛) = [best
−
𝑖 (𝒛), best

+ (𝒛)]. Moreover,

the smallest, largest, and lazy best responses of every agent 𝑖 are

monotone in the strategy profile 𝒛.

Corollary 3.3. Suppose 𝒛 ≤ 𝒛′ pointwise. Then best
−
𝑖 (𝒛) ≤

best
−
𝑖 (𝒛′), best

+
𝑖 (𝒛) ≤ best

+
𝑖 (𝒛′), and best

𝑙
𝑖 (𝒛) ≤ best

𝑙
𝑖 (𝒛′).

Yet another consequence of Proposition 3.2 is a restriction of

the strategy space. If agents always choose their best responses

from best
+
𝑖 (𝒛), best

−
𝑖 (𝒛) or best

𝑙
𝑖 (𝒛), then at any point of time the

opinions in the strategy profile remain a subset of the initial public

and intrinsic opinions.

Observation 3.4. During any dynamics starting from 𝒛, in which
every agent 𝑖 chooses from the three best responses best

−
𝑖 (𝒛), best

+
𝑖 (𝒛),

and best
𝑙
𝑖 (𝒛), all chosen strategies come from {𝑠𝑖 } ∪ {𝑧 𝑗 | 𝑗 ∈ 𝑉 }.

Proof. Proposition 3.2 guarantees that all three best responses

are a weighted median of

(𝑠𝑖 , 𝑧𝑁 (𝑖 ) ,med(best𝑖 (𝒛), 𝑧−𝑖 );𝛼𝑖 , 𝛽𝑁 (𝑖 ) , 𝛾𝑖 ). (1)
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If the weighted median is unique, then best
−
𝑖 (𝒛) = best

+
𝑖 (𝒛) =

best
𝑙
𝑖 (𝒛) and the median has to be one of the values from the vector

in (1), which are always included in {𝑠𝑖 } ∪ {𝑧 𝑗 | 𝑗 ∈ 𝑉 }. If 𝐵𝑖 (𝒛)
is an interval, then each of the three best responses is one of the

borders, which are again included in {𝑠𝑖 } ∪ {𝑧 𝑗 | 𝑗 ∈ 𝑉 }. □

Observe that no new opinions are introduced during such dy-

namics. For a given initial profile, let 𝐼 = {𝑠 𝑗 , 𝑧 𝑗 | 𝑗 ∈ 𝑉 } be the set
of initial opinions in 𝒛 and 𝒔. When considering such dynamics, we

can assume w.l.o.g. that the set of possible opinions is restricted

to 𝐼 with at most 2𝑛 opinions. Moreover, the lower weighted me-

dian is independent of the numeric opinion values and based only

on (weights and) the total ordering of opinions. As such, we can

assume that the available opinions are the integers 1, 2, . . . , |𝐼 | ≤ 2𝑛.

4 ANALYSIS OF EQUILIBRIA

We start by analyzing the properties of equilibria and introduce an

efficient method to compute equilibria, the 2-Phase algorithm. We

show that the set of equilibria has substantial structure. For any

initial profile 𝒛, let Ξ = {𝒛′ | min 𝐼 ≤ 𝑧′
𝑖
≤ max 𝐼 for all 𝑖 ∈ 𝑉 } be

the subset of strategy profiles bounded by initial opinions.

Proposition 4.1. For any median opinion game G with initial

profile 𝒛, the set {𝒛∗ | 𝑧∗ ∈ Ξ is an equilibrium} forms a complete

lattice with respect to ≤ (componentwise).

Proof. The set of strategy profiles Ξ forms a complete lattice

with respect to ≤ (componentwise). By Corollary 3.3 the multi-

function 𝑓 that maps each component to 𝐵𝑖 (𝒛) is monotone. By

Observation 3.4 andmonotonicity we see that if 𝒛 ∈ Ξ, then 𝐵𝑖 (𝒛) ⊆
Ξ for all 𝑖 ∈ 𝑉 . Hence, 𝑓 : Ξ → 2

Ξ
, and the fixed-points of 𝑓 (in

which 𝑧𝑖 ∈ 𝐵𝑖 (𝒛) for all 𝑖 ∈ 𝑉 ) are exactly the equilibria from Ξ.
An extension of the Knaster-Tarski theorem to order-preserving

multi-functions [25, 45, 51] shows that the set of fixed-points of 𝑓

forms a complete lattice. □

Since every complete lattice consists of at least one element,

Proposition 4.1 implies that every game has at least one equilibrium.

Moreover, whenwe restrict to equilibria fromΞ, the componentwise

maximal and minimal equilibria are both unique.

Beyond the mere existence of equilibria, we are interested in

equilibria that can be reached by best-response dynamics. We call

such an equilibrium reachable (from initial profile 𝒛). Indeed, for ev-
ery game and initial strategy profile 𝒛, there is at least one reachable
equilibrium, and it can be computed efficiently using the following

2-Phase algorithm.

2-Phase Algorithm: In the beginning of each round 𝑘 ≥ 1

in phase 1, consider the current state 𝒛 (𝑘 ) (where 𝒛 (1) = 𝒛). We

consider the set 𝑈 (𝒛𝑘 ) = {𝑖 | 𝑧 (𝑘 )
𝑖

∉ 𝐵𝑖 (𝒛 (𝑘 ) ), best
+
𝑖 (𝒛 (𝑘 ) > 𝑧

(𝑘 )
𝑖

}
of agents that want to deviate to a larger opinion. We pick an agent

𝑖 ∈ arg max{best
+
𝑗 (𝒛 (𝑘 ) | 𝑗 ∈ 𝑈 (𝒛 (𝑘 ) )} that wants to deviate to the

largest best-response and allow them to deviate. We continue phase

1 until no agent wants to deviate to a higher opinion. Let �́� be the
state that emerges after phase 1.

In the beginning of each round 𝑘 ≥ 1 in phase 2, consider the

current state 𝒛 (𝑘 ) (where 𝒛 (1) = �́�). We consider the set 𝐷 (𝒛 (𝑘 ) ) =
{𝑖 | best

+
𝑖 (𝒛 (𝑘 ) ) < 𝑧

(𝑘 )
𝑖

}) of agents that want to deviate to a lower

opinion. We pick an agent 𝑖 ∈ arg min{best
+
𝑗 (𝒛 (𝑘 ) | 𝑗 ∈ 𝐷 (𝒛 (𝑘 ) )}

whose largest best-response is smallest and allow them to deviate.

We continue phase 2 until no agent wants to deviate to a lower

opinion. Let �̂� be the state that emerges after phase 2.

There are two variants of the algorithm. We call the one de-

scribed above the ascending 2-Phase algorithm. In the descending

2-Phase algorithm, the phases are reversed, we consider smallest

best-responses best
−
𝑖 in both phases, and among the agents that

want to deviate we choose one for which best
−
𝑖 is smallest in phase

1 and largest in phase 2. If not stated otherwise, we only consider

the ascending 2-Phase algorithm in the following proofs, as the

arguments for the two variants are very analogous. We first observe

that our algorithms indeed converge to an equilibrium.

Lemma 4.2. For any median opinion game G and initial profile

𝒛, both variants of the 2-Phase algorithm compute an equilibrium

in O(𝑛) steps. The resulting equilibrium is unique over possible tie-

breaking in choosing the deviating agent 𝑖 in each step.

Proof. We only consider the ascending 2-Phase algorithm. Con-

sider any round 𝑘 of phase 1 in which some agent 𝑖 is chosen to de-

viate. Profile 𝒛 (𝑘+1)
evolves after 𝑖 deviated to 𝑧

(𝑘+1)
𝑖

= best
+
𝑖 (𝒛 (𝑘 ) ).

Consider any other agent 𝑗 ≠ 𝑖 . Due to monotonicity (Corollary 3.3),

best
+
𝑗 (𝒛 (𝑘+1) ) ≥ best

+
𝑗 (𝒛 (𝑘 ) ). The set of agents that want to de-

viate to smaller opinions can only shrink. Since best responses

are weighted medians, best
+
𝑗 (𝒛 (𝑘+1) ) can grow to at most 𝑧

(𝑘+1)
𝑖

.

Thus, if best
+
𝑗 (𝒛 (𝑘 ) ) > 𝑧

(𝑘+1)
𝑖

previously, then after the deviation

it remains best
+
𝑗 (𝒛 (𝑘+1) ) = best

+
𝑗 (𝒛 (𝑘 ) ). Overall, best

+
𝑗 (𝒛 (𝑘+1) ) ≤

max{best
+
𝑗 (𝒛 (𝑘 ) ), 𝑧

(𝑘+1)
𝑖

} for all 𝑗 ∈ 𝑉 . We choose agent 𝑖 to deviate

such that best
+
𝑖 (𝒛 (𝑘 ) ) is maximal. Hence, all agents in 𝑈 (𝒛 (𝑘+1) )

want to deviate to at most 𝑧
(𝑘+1)
𝑖

. Thus, 𝑧
(𝑘+1)
𝑖

= best
+
𝑖 (𝒛 (𝑘+1) )

remains the largest best-response throughout the rest of phase 1.

Each agent 𝑖 deviates at most once in phase 1.

If there are several agents 𝑖 ∈ 𝑈 (𝒛 (𝑘 ) ) with maximal 𝑧′ =

best
+
𝑖 (𝒛 (𝑘 ) ) = max{best

+
𝑗 (𝒛 (𝑘 ) ) | 𝑗 ∈ 𝑈 (𝒛 (𝑘 ) )}, by the above ar-

guments they will be chosen sequentially in the algorithm and all

deviate to 𝑧′ independent of their ordering. As such, the state �́�
emerging at the end of phase 1 is unique.

The analysis of phase 2 follows symmetrically. By the same argu-

ment, we choose the agent from 𝐷 (𝒛 (𝑘 ) ) with smallest best
+
𝑖 (𝒛 (𝑘 ) )

in phase 2. In the emerging profile 𝒛 (𝑘+1)
, by monotonicity, we

only lower all best
+
𝑗 (𝒛 (𝑘+1) ) ≤ best

+
𝑗 (𝒛1(𝑘)). This maintains the

invariant that no player wants to deviate to a higher opinion.

Moreover, by the properties of weighted medians, best
+
𝑗 (𝒛 (𝑘+1) ) ≥

min{best
+
𝑗 (𝒛 (𝑘 ) ), 𝑧

(𝑘+1)
𝑖

}. Thus, each agent deviates at most once,

and if there are several agents 𝑖 ∈ 𝐷 (𝒛 (𝑘 ) )with smallest best
+
𝑖 (𝒛 (𝑘 ) ),

the order in which they are allowed to deviate does not affect their

chosen opinion. □

For each initial profile 𝒛, the two versions of the 2-Phase algo-

rithm yield two unique reachable equilibria. These equilibria bound

all of the reachable equilibria from 𝒛.

Theorem 4.3. For anymedian opinion gameG and initial profile 𝒛,
the ascending (descending) 2-Phase algorithm computes the unique
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maximum (minimum) reachable equilibrium in polynomial time.

The maximum (minimum) median opinion among all reachable

equilibria occurs at the maximum (minimum) equilibrium.

Proof. Consider the state �́� after phase 1. We will first show

inductively that �́� ≥ �̃� (componentwise) for any state �̃� reachable
by best-response dynamics from 𝒛. We number the agents based on

the round they deviated in phase 1. The statement clearly holds for

agent 1. best
+
1
(𝒛) is the largest opinion any agent wants to deviate

to in 𝒛. No deviation of any agent 𝑗 to 𝑥 ≤ best
+
1
(𝒛) can make

best
+
𝑘
(𝒛) grow to beyond 𝑥 , for any 𝑘 ∈ 𝑉 . Hence, in any sequence

of best responses starting from 𝒛, we maintain the invariant that

no agent ever wants to deviate to an opinion 𝑥 > best
+
1
(𝒛). This

proves the statement for agent 1. Now, inductively, given that the

statement holds for agents 1, . . . , 𝑘 − 1, consider agent 𝑘 . We again

use 𝒛𝑘 to denote the state in the beginning of round 𝑘 of the phase

1. Agents 𝑗 = 1, . . . , 𝑘 − 1 are at their maximal reachable opinions

𝑧 𝑗 ≥ best
+
𝑘
(𝒛𝑘 ). By monotonicity, this only increases best

+
𝑗 (𝒛 𝑗 ) for

𝑗 = 𝑘, 𝑘 + 1, . . .. By the choice of 𝑘 , all other agents 𝑗 ≥ 𝑘 want

to deviate to opinions at most best
+
𝑘
(𝒛𝑘 ), even after 𝑘 deviates to

best
+
𝑘
(𝒛𝑘 ). Thus, for any sequence of best responses from 𝒛, given

that agents 1, . . . , 𝑘−1 never play higher opinions, agents 𝑘, 𝑘+1, . . .

never want to deviate to any opinion 𝑥 > best
+
𝑘
(𝒛𝑘 ). This proves

the statement for agent 𝑘 , and thus all agents that deviate during

phase 1 of the 2-Phase algorithm. Now finally, consider all agents 𝑖

with 𝑧𝑖 = 𝑧𝑖 who did not deviate during phase 1. By monotonicity,

these agents must also have 𝑧𝑖 ≤ 𝑧𝑖 in any reachable state.

Consider any reachable equilibrium 𝒛. Since �́� ≥ �̃� for any

reachable state �̃�, phase 2 maintains the invariant that best
+
𝑖 (𝒛) ≥

best
+
𝑖 (𝒛) for all 𝑖 ∈ 𝑉 , by monotonicity. Thus, the equilibrium com-

puted by 2-Phase fulfills �̂� ≥ 𝒛.
An analogous argument using the descending 2-Phase algorithm

proves the statement regarding theminimum equilibrium. Bymono-

tonicity, the maximum and minimum median opinions among the

reachable equilibria have to occur at the (componentwise) maxi-

mum and minimum equilibria, respectively. □

5 NUMBER OF EQUILIBRIA

By Proposition 3.2, best responses form a closed interval. Hence, for

some initial state 𝒛, there are trivial examples with infinitely many

reachable equilibria. In this section we will show that even for lazy

best-response dynamics (in which all best responses remain within

the set 𝐼 of initial opinions) the number of reachable equilibria can

be very large, and the median opinions can be very diverse. We can

show these properties even for instances with undirected graphs.

Let 𝑘 = 2
𝑞
with 𝑞 ∈ N, 𝑞 ≥ 2. In the following we define a

uniform family of instances 𝑇𝑘 (games and initial states) with 𝑘

opinions and 𝑛 = poly(𝑘) agents with the following properties:

• For each opinion 𝑗 (1 ≤ 𝑗 ≤ 𝑘), there exists a reachable

equilibrium where the median of the public opinions equals

the public opinion 𝑗 .

• The number of reachable equilibria is exponentially large

in 𝑘 .

The familyG𝑘 = (𝑇𝑘 , 𝒔,𝜶 , 𝜷,𝜸 )with corresponding initial profile
𝒛 is defined as follows. For a fixed 𝑘 , 𝑇𝑘 (𝜶 , 𝜷,𝜸 ) consists of log𝑘

layers with 𝒔 ⊂ {1, . . . 𝑘}. See Figure 1 for an example. The first
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Figure 1: Tournament graph 𝑇𝑘 for 𝑘 = 8 with 8 player agents

(orange), 16 transfer agents (blue), 3 elimination agents (pur-

ple), and 48 stabilizing agents (yellow).

log𝑘 − 1 layers consist of 𝑘 agents each, while the last layer has

2𝑘 log𝑘 agents.

• The 𝑗th agent of layer 0 is denoted 𝑝 𝑗 (colored orange) and

it is initialized with private opinion 𝑧𝑝 𝑗
= 𝑠𝑝 𝑗

= 𝑗 . We call

these agents player agents.

• For 1 ≤ ℓ ≤ log𝑘 − 2 the 𝑗th agent of the ℓth layer is

denoted 𝑡 𝑗,ℓ . All agents 𝑡 𝑗,ℓ with 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ ℓ ≤ log𝑘 − 2

(colored blue) are initialized with opinion 𝑧𝑡 𝑗,ℓ = 𝑠𝑡 𝑗,ℓ =⌊ 𝑗
4ℓ

⌋
+ (( 𝑗 + 2ℓ) mod 4ℓ). They are called transfer agents.

• The 𝑗th agent from the last layer log𝑘 − 1 is denoted 𝑚 𝑗

(colored yellow) and they are initialized with opinion 𝑧𝑚 𝑗
=

𝑠𝑚 𝑗
= 𝑘/2. These agents are called median stabilizing agents.

In addition to these layers we have log𝑘 − 2 intermediate layers

(colored pink), layer 1 ≤ 𝑖 < log𝑘 − 2 containing 2
log𝑘−1−𝑖

many

agents. The 𝑗 th agent of the ℓth layer is denoted 𝑒 𝑗,ℓ and is initialized

with opinion 𝑧𝑒 𝑗,ℓ = 𝑠𝑒 𝑗,ℓ = 1. We call these agents elimination

agents. It remains to define the edges of 𝑇𝑘 .

• Player agents: for each 𝑖 = 2 𝑗 − 1, 𝑗 ∈ N, we connect 𝑝𝑖
and 𝑝𝑖+1 with an edge of weight 𝑤1 = 𝑤2 + 𝛼 + 𝛽 + 𝛾 + 1.

Additionally, 𝑝 𝑗 will be connected to a transfer agent 𝑡 𝑗,1
(blue) with an edge of weight𝑤2.

• Elimination agents: agents at level 1 ≤ ℓ < log(𝑘) − 2 are

connected to transfer agents at level ℓ and level (ℓ + 1) with
edges of weight

𝑤2ℓ+1 = 𝑤2ℓ + 𝛼 + 𝛽 + 𝛾 + 1

and 𝑤2ℓ+2 =
1

2

(
𝛾 + 𝛽 + 𝛼 + 2

ℓ+1 ·𝑤2ℓ+3

)
+ 1,

respectively. More precisely, elimination agent 𝑒 𝑗,ℓ is con-

nected to transfer agents 𝑡 ( 𝑗−1)2ℓ+1+1,ℓ to 𝑡 𝑗 ·2ℓ+1,ℓ and transfer

agents 𝑡 ( 𝑗−1)2ℓ+1+1,ℓ+1
to 𝑡 𝑗 ·2ℓ+1,ℓ+1

if ℓ < log𝑘 − 1. The sin-

gle elimination agent at level log𝑘 − 2 is connected at level

log𝑘 − 2 with edge weight𝑤
2 log(𝑘/2)−3

. Furthermore, it is

connected to all median stabilizing agents with edge weight

𝑤
2 log(𝑘/2)−2

= 𝛼 + 𝛽 + 𝛾 + 1.

Lemma 5.1. Suppose that𝑘 = 2
𝑞
with𝑞 ∈ N, 𝑞 ≥ 2. Let𝑇𝑘 (𝜶 , 𝜷,𝜸 )

be an uniform gamewith𝛼, 𝛽,𝛾 ∈ N0 with𝑘 opinions andO(𝑘 log(𝑘))
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agents. For each 1 ≤ 𝑗 ≤ 𝑘 there exists an equilibrium where the

global median takes on the value 𝑗 .

Proof sketch. In the following we specify an activation or-

der in which each agent is activated exactly once. We start with

propagating opinion 𝑗 from the 𝑗th player agent to the bottom

of 𝑇𝑘 (𝜶 , 𝜷,𝜸 ) via the elimination agents. As soon as opinion 𝑗

reaches the elimination agent on level log𝑘 − 2, all median stabi-

lizing agents are updated. All these agents adopt opinion 𝑗 . After

these updates the global median becomes opinion 𝑗 . After that the

remaining nodes are activated one layer after the other, starting

from layer 0. All agents who have been already updated cannot

change their opinion anymore. This holds due to the corresponding

edge weights. Hence, due to the sheer amount of median stabilizing

agents, opinion 𝑗 remains global median. □

For each player pair 𝑝𝑖 , 𝑝𝑖+1 for 𝑖 = 2 𝑗 + 1, 𝑗 ∈ N, in each

equilibrium both agents have either opinion 𝑖 or opinion 𝑖 + 1. The

following corollary is a consequence.

Corollary 5.2. 𝑇𝑘 (𝜶 , 𝜷,𝜸 ) has an exponential (in 𝑘) number of

reachable equilibria.

6 STABILIZING THE MEDIAN

Let G = (𝐺, 𝒔,𝜶 , 𝜷,𝜸 ) be a median opinion game with initial pro-

file 𝒛. We call the pair G, 𝒛 stable if all equilibria reachable from

𝒛 share the same global median. In this section we consider the

question of how to change the median weights 𝛾𝑖 of a given opinion

game G with a fixed initial profile 𝒛 such that the pair becomes

stable. We say that these changes stabilize G and 𝒛.
Observe that stabilizing G and 𝒛 is always possible when all

the median weights 𝛾𝑖 are increased by some value 𝛿 that is large

enough. In particular, there is only one reachable equilibrium –

and hence a unique global median – if 𝛾𝑖 for each agent 𝑖 is larger

than the weight of the intrinsic opinion, together with the overall

weight of the neighbors of agent 𝑖 . This is the case, e.g., if we set 𝛿

to 𝜉 = 1 + max

{
𝛼𝑖 +

(∑
𝑗∈𝑁 (𝑖 ) 𝛽𝑖 𝑗

)
− 𝛾𝑖

�� 𝑖 ∈ 𝑉
}
. However, it seems

intuitive that in many cases, much lower values 𝛿 should suffice; the

minimum value of 𝛿 should depend on G and 𝒛. The main result of

this section is that we can efficiently compute the minimum value

of 𝛿 applying the 2-Phase algorithm described in Section 4.

Theorem 6.1. There exists a polynomial time algorithm that, given

a median opinion game G = (𝐺, 𝒔,𝜶 , 𝜷,𝜸 ) and an initial profile 𝒛,
finds the minimal integer value 𝛿 ∈ Z≥0 such that the global median

of 𝒛 is stabilized when all the median weights 𝛾𝑖 are increased by 𝛿 .

We prove Theorem 6.1 in several steps, taking a closer look at the

two phases of (the two variants of) the 2-Phase algorithm. Let us

first introduce some notation. Let �́� and �̂� denote the strategy pro-

files that are obtained from 𝒛 after phase 1 and after phase 2 of the

ascending 2-Phase algorithm, respectively. Note that Lemma 4.2

and its proof imply that both �́� and �̂� are well-defined and inde-

pendent of tie-breaking in the ordering of the updating agents in

the two phases. We define 𝒛 and �̌� accordingly with regard to the

descending 2-Phase algorithm. Furthermore, we will consider these

four profiles with regard to different values 𝛿 that are added to the

median weight and write �́� (𝛿), �̂� (𝛿), 𝒛 (𝛿) and �̌� (𝛿), respectively.
The proof of Theorem 6.1 relies upon the following two lemmas.

Lemma 6.2. For 𝛿 ∈ [0, 𝜉] ∩ Z, the value med(�́� (𝛿)) is mono-

tonically non-increasing in 𝛿 . In contrast, the value med(𝒛 (𝛿)) is
monotonically non-decreasing in 𝛿 .

Lemma 6.3. Let 𝜆, 𝜆′, 𝜌, 𝜌′ ∈ [0, 𝜉] ∩ Z with 𝜆 < 𝜌 and 𝜆′ < 𝜌′

such that med(�́� (𝜆)) = med(�́� (𝜌)) and med(𝒛 (𝜆′)) = med(𝒛 (𝜌′)).
• For 𝛿 ∈ [𝜆, 𝜌] ∩ Z the median med(�̂� (𝛿)) is monotonically

non-decreasing in 𝛿 , and

• for 𝛿 ∈ [𝜆′, 𝜌′] ∩ Z the median med(�̌� (𝛿)) is monotonically

non-increasing in 𝛿 .

With these lemmas we can show the main theorem of this section.

Proof of Theorem 6.1. Recall that the ascending 2-Phase al-

gorithm computes the unique maximum reachable equilibrium

(see Theorem 4.3). In this algorithm each activated agent 𝑖 up-

dates to best
+
𝑖 (𝒛), the latter is either one of the private opinions

from G, or an opinion from the initial strategy profile 𝒛 (see Ob-
servation 3.4). Hence, the median can adopt at most 2𝑛 different

values during the whole run of the algorithm. This observation

combined with Lemma 6.2 implies that med(�́� (𝛿)) is a monotoni-

cally non-increasing step function that can have only O(𝑛) many

steps. Moreover, since 𝛿 can only take on integer values, we can

find the exact step borders of the step function using O(𝑛) rounds
of binary search over the value of 𝛿 . These step borders partition

[0, 𝜉] ∩ Z into O(𝑛) many non-overlapping, discrete intervals such

thatmed(�́� (𝛿)) is invariable for each such interval [𝜆, 𝜌]∩Z. Follow-
ing this, we can employ the same approach for each such interval

utilizing Lemma 6.3 to derive a partition of [0, 𝜉] ∩ Z into O(𝑛2)
many non-overlapping, discrete intervals such that med(�̂� (𝛿)) is
invariable for each such interval.

An analogous approach can be used for the descending 2-Phase

algorithm. This shows that [0, 𝜉] ∩ Z can be partitioned into O(𝑛2)
many non-overlapping, discrete intervals such that med(�̌� (𝛿)) is
invariable for each such interval.

At this point we have O(𝑛2) many interval border values (from

the ascending and descending 2-Phase algorithm). We can consider

these values in increasing order. For each border value 𝛿 , at least one

of the values med(�̂� ( ¯𝛿)) or med(�̌� ( ¯𝛿)) changes. We are interested

in the minimum value
¯𝛿 with med(�̂� ( ¯𝛿)) = med(�̌� ( ¯𝛿)). This value

¯𝛿 is indeed the minimum non-negative integer value such that

each reachable equilibrium has the same median if all the median

weights 𝛾𝑖 are increased by
¯𝛿 (see Theorem 4.3). □

It remains to prove Lemmas 6.2 and 6.3. For both lemmas, we

will only prove the statements for the ascending 2-Phase algorithm,

i.e., regarding �́� and �̂�. The statements for the descending 2-Phase

algorithm work analogously. To show the lemmas, we consider

two values 𝛿1, 𝛿2 ∈ [0, 𝜉] ∩ Z with 𝛿1 < 𝛿2. To distinguish the

runs of the 2-Phase algorithm w.r.t. 𝛿1 and 𝛿2, we will talk about

process 1 and process 2, respectively. We abbreviate 𝒛 (ℓ ) = 𝒛 (𝛿ℓ )
and 𝜇 (ℓ ) = med(𝒛 (𝛿ℓ )) for ℓ = 1, 2. Moreover, for any opinion 𝑥

and comparative operator ≷∈ {<, >, ≤, ≥,=}, we set𝑉 (ℓ )
≷𝑥 = {𝑖 ∈ 𝑉 |

𝑧
(ℓ )
𝑖
≷ 𝑥}. This notation is further extended in an obvious fashion,

e.g., 𝜇 (ℓ ) = med(�̂� (ℓ ) ). Finally, we will examine combined states

in the progress of both processes in more detail. Formally, such a

(combined) state 𝑠 is a pair (𝑠 (1) , 𝑠 (2) ), where 𝑠 (ℓ ) denotes the state
of process ℓ ∈ {1, 2}. We will write 𝒛 (ℓ,𝑠 ) to denote the strategy
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profile of process ℓ in state 𝑠 and extend this notation in an obvious

fashion as above.

Proof of Lemma 6.2. Recall that 𝜇 (2) is defined as the median

that is reached after the first phase of process 2. For slightly simpler

notation in the following, we set 𝜇 = 𝜇 (2) .
We define the combined state 𝑠 = (𝑠 (1) , 𝑠 (2) ) as follows. State

𝑠 (1) denotes the first time in phase 1 of process 1 in which no agent

remains that can deviate to an opinion greater than or equal to

𝜇. State 𝑠 (2) , on the other hand, denotes the first time in phase

2 of process 2 that the median takes the value 𝜇. We claim that

𝑉
(1,𝑠 )
≥𝜇 ⊇ 𝑉

(2,𝑠 )
≥𝜇 . Note that by definition, we have 𝜇 (2,𝑠 ) = 𝜇. Hence,

the claim implies 𝜇 (1,𝑠 ) ≥ 𝜇 and therefore shows the lemma.

Assume that the claim is not true. Since the two processes start

with the same strategy profile, this implies that there has to be a

first agent 𝑖∗ in process 2 with 𝑖∗ ∈ 𝑉
(2,𝑠 )
≥𝜇 \ 𝑉 (1,𝑠 )

≥𝜇 . We consider

all the influences supporting the deviation of 𝑖∗ in process 2. The

choice of 𝑖∗ implies that any neighbor 𝑖′ of 𝑖∗ that supports the

deviation of 𝑖∗ to at least 𝜇 in process 2, also does so in process 1

in state 𝑠 . Furthermore, the definition of state 𝑠 (2) implies that the

median works against the deviation of 𝑖∗ in process 2. This may or

may not also be the case regarding process 1 and state 𝑠 but in any

case the median has a smaller influence in process 1 since 𝛿1 < 𝛿2.

Lastly, the private opinion of 𝑖∗ obviously has the same influence in

both processes. Hence, 𝑖∗ has an incentive to deviate to at least 𝜇 in

process 1 in state 𝑠 , but no agent in process 1 has such an incentive

in state 𝑠 – a contradiction. □

In the proof of Lemma 6.3 we are interested in the case that the

two processes reach the same median at the end of phase 1. Hence,

we assume 𝜇 (1) = 𝜇 (2) in the following analysis and again denote

this value as 𝜇. We can use a similar argument as we did above,

but first have to take a closer look at phase 1 of the two processes.

Intuitively, the fact that 𝛿1 < 𝛿2 should lead to the opinions being

clustered more closely around 𝜇 for �́� (2) than for �́� (1) . This is indeed
utilized in the following.

Proof of Lemma 6.3. Recall that 𝜇 (2) is defined as the median

that is reached after phase 2 of process 2. Both processes have the

median value 𝜇 at the end of phase 1 and the median can only

decrease in phase 2. Hence, there is nothing further to show if

𝜇 (2) = 𝜇 and we assume 𝜇 (2) < 𝜇 in the following.

We consider the combined state 𝑎, where state 𝑎 (ℓ ) of process
ℓ ∈ {1, 2} denotes the first time in phase 1 in which no agent

remains that can deviate to an opinion larger or equal to 𝜇. We

claim that 𝑉
(1,𝑎)
≥𝜇 ⊆ 𝑉

(2,𝑎)
≥𝜇 .

Assume for the sake of contradiction that this is not true. Let

𝑖∗ ∈ 𝑉
(1,𝑎)
≥𝜇 \𝑉 (2,𝑎)

≥𝜇 and let 𝑖∗ be the first such agent in process 1.

The choice of 𝑖∗ implies that any neighbor 𝑖′ of 𝑖∗ that supports the
deviation of 𝑖∗ to at least 𝜇 in process 1, also does so in process 2 in

state 𝑎. Moreover, the median may or may not support the deviation

of 𝑖∗ in process 1. But in process 2 the median 𝜇 is reached in state

𝑎, and hence the median does support a deviation to at least 𝜇 and

with a stronger influence since 𝛿2 > 𝛿1. Hence, 𝑖
∗
has an incentive

to deviate to at least 𝜇 in process 2 in state 𝑎, but no agent has such

an incentive in state 𝑎 – a contradiction.

We continue with the combined state 𝑏 in which both processes

finished phase 1 of the 2-Phase algorithm.We claim𝑉
(1,𝑏 )
<𝜇 ⊇ 𝑉

(2,𝑏 )
<𝜇

and 𝑧
(1,𝑏 )
𝑖

≤ 𝑧
(2,𝑏 )
𝑖

for each 𝑖 ∈ 𝑉
(1,𝑏 )
<𝜇 . Now, the first statement of

the claim is directly implied by the claim for state 𝑎, and we assume,

for the sake of contradiction, that the second statement is not true.

For 𝑖 ∈ 𝑉
(1,𝑏 )
<𝜇 \𝑉 (2,𝑏 )

<𝜇 , we already know that 𝑖 deviates to a value

smaller than 𝜇 in phase 1 of process 1 but at least 𝜇 in phase 1 of

process 2. Hence, there has to be a first agent 𝑖∗ in process 1 with

𝑖∗ ∈ 𝑉
(1,𝑏 )
<𝜇 ∩𝑉 (2,𝑏 )

<𝜇 and 𝑧
(1,𝑏 )
𝑖∗ > 𝑧

(2,𝑏 )
𝑖∗ . Since the final median 𝜇 for

both processes in phase 1 is already reached in state 𝑎, the median

supports a deviation of 𝑖∗ to at least 𝑧
(1,𝑏 )
𝑖∗ in process 2 in state 𝑏.

Furthermore, this support is stronger than the one for the deviation

of 𝑖∗ in process 1 because 𝛿1 < 𝛿2. Next, we consider the neighbors

of 𝑖∗ that support their deviation in process 1. Any such neighbor

𝑖′ also supports a deviation of 𝑖∗ to 𝑧 (1,𝑏 )
𝑖∗ in process 2 in state 𝑏. To

see this, note that 𝑖′ either did not deviate in phase 1 of process

1 before 𝑖∗ or it did to either an opinion of at least 𝜇 or at most 𝜇.

The support for a deviation of 𝑖∗ to 𝑧 (1,𝑏 )
𝑖∗ in process 2 in state 𝑏 is

guaranteed in the first case, since the two processes have the same

initial strategy profile; in the second, due to the claim for state 𝑎;

and in the third case, because of the choice of 𝑖∗. Hence, 𝑖∗ has an
incentive to deviate to a higher opinion in state 𝑏 in process 2, but

no agent has an incentive to do so in state 𝑏 – a contradiction.

Finally, we define the combined state 𝑐 as follows. State 𝑐 (1) of
process 1 denotes the first time in phase 2 in which no agent remains

that can deviate to an opinion smaller or equal to 𝜇 (2) . State 𝑐 (2)

of process 2, on the other hand, denotes the first time in phase 2

that the median takes the value 𝜇 (2) . For clarity of notation, we set

¤𝜇 = 𝜇 (2) . We claim that𝑉
(1,𝑐 )
≤ ¤𝜇 ⊇ 𝑉

(2,𝑐 )
≤ ¤𝜇 . Note that by definition, we

have 𝜇 (2,𝑐 ) = ¤𝜇. Hence, the claim implies 𝜇 (1,𝑐 ) ≤ ¤𝜇 and therefore

suffices to show the lemma.

Assume that the claim is not true. Remember that we have ¤𝜇 < 𝜇,

as discussed at the start of the proof. Moreover, regarding state 𝑏,

we did show𝑉
(1,𝑏 )
<𝜇 ⊇ 𝑉

(2,𝑏 )
<𝜇 and 𝑧

(1,𝑏 )
𝑖

≤ 𝑧
(2,𝑏 )
𝑖

for each 𝑖 ∈ 𝑉
(1,𝑏 )
<𝜇 .

This implies that the corresponding claim is true at the end of phase

1, i.e., for the combined state 𝑏. Hence, there has to be a first agent

𝑖∗ in process 2 with 𝑖∗ ∈ 𝑉
(2,𝑐 )
≤ ¤𝜇 \ 𝑉 (1,𝑐 )

≤ ¤𝜇 . The definition of state

𝑐 (2) implies that the median does not support the deviation of 𝑖∗ in
process 2. Moreover, a neighbor 𝑖′ supporting the deviation of 𝑖∗ to
a value of at most ¤𝜇 in process 2 also does so in process 1 in state

𝑐 . To see this, note that 𝑖′ either did deviate in phase 2 of process

2 prior to 𝑖∗ or it did not. In the first case, the choice of 𝑖∗ implies

𝑖′ ∈ 𝑉
(1,𝑐 )
≤ ¤𝜇 and in the second 𝑖′ has opinion 𝑧 (2,𝑏 )

𝑖′ ≥ 𝑧
(1,𝑏 )
𝑖′ when 𝑖∗

deviates in process 2. Hence, we have a contradiction. □

The proof technique of Theorem 6.1 can be used to show further

results. For example, Lemma 6.2 and Lemma 6.3 work as well if

the median weight is only increased for a given subset 𝑉 ′
of agents.

However, in this case, it can be impossible to stabilize the median.

Rather, we aim to obtain the smallest possible difference between

the minimum and maximummedian of reachable equilibria. Let this

value be 𝜏𝑉 ′ . For a collectionV ⊆ 2
𝑉
of subset of agents, we may

be interested in the smallest 𝜏min = min{𝜏𝑉 ′ | 𝑉 ′ ∈ V}. Moreover,

from the subsets that guarantee 𝜏min, we want to choose one that
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achieves this optimal difference using the smallest (integer) increase

in median weight, i.e., 𝛿min = min{𝛿𝑉 ′ | 𝜏𝑉 ′ = 𝜏min,𝑉
′ ∈ V}. We

say that a pair (𝑉 ′, 𝛿𝑉 ′ ) with 𝛿𝑉 ′ = 𝛿min has an optimal median gap

with smallest increase in V . It is easy to show the following result:

Corollary 6.4. Let 𝑘 ∈ Z≥0 be a constant and V = {𝑆 ⊆ 𝑉 |
|𝑆 | ≤ 𝑘}. There is a polynomial-time algorithm to find a pair (𝑉 ′, 𝛿𝑉 ′ )
that has an optimal median gap with smallest increase in V .

Proof. First note that increasing any median weight by more

than 𝜉 will lead to the same result as increasing it by 𝜉 . Hence,

we can simply enumerate all O( |𝑉 |𝑘 ) many possibilities for 𝑉 ′
. By

increasing the weight by 𝜉 for each, we determine 𝜏min. Then, by

restricting attention to sets 𝑉 ′
with 𝜏min, we can use the approach

from the proof of Theorem 6.1 to find 𝛿𝑉 ′ for each of them. In this

way, we obtain a pair (𝑉 ′, 𝛿𝑉 ′ ) that has optimal median gap with

smallest increase. □

This polynomial-time enumeration can be applied even when

we have further restrictions on V . One might wonder about the

complexity of the problem if 𝑘 is not part of the input (i.e., not

necessarily constant). A special case of the problem with arbitrary

𝑘 is studied in more detail in the next section.

7 HARDNESS RESULTS

In this section, we will first prove the following theorem, and then

we discuss a variant with unit weights. Remember that we call a

median opinion game G and an initial profile 𝒛, stable (with respect

to the median of reachable equilibria) if all equilibria reachable from

𝒛 share the same global median. We define the decision problem

StableMedian(G, 𝒛) as the problem to decide if the global median

of the initial profile 𝒛 in the median opinion game G can be stabi-

lized by increasing the influence of the weight of the aggregation

function 𝛾𝑖 for 𝑘 agents 𝑖 ∈ 𝑉 by any value 𝛿 ≥ 0.

Theorem 7.1. StableMedian is NP-complete.

Proof. Considering Theorem 4.3, we observe that StableMe-

dian is indeed in NP: for a given guess of 𝑘 agents, the problem can

be decided by increasing their median weights by 𝜉 and running

the two variants of the 2-Phase algorithm (as was done in the proof

of Corollary 6.4).

We show NP-hardness starting from the classical vertex cover

problem. In this problem, a graph 𝐺 = (𝑉 , 𝐸) and an integer 𝑘 ∈
{1, . . . , |𝑉 |} are given, and the goal is to decide whether a selection

𝐶 ⊆ 𝑉 of (at most) 𝑘 vertices exist such that each edge is connected

to at least one vertex in 𝐶 . We will assume w.l.o.g. that |𝐸 | > 𝑘 .

The reduction uses a construction that can be divided into three

gadgets. There is a vertex gadget, an edge gadget, and a pivot gadget.

There are only two opinions: 0 and 1, and 1 is the initial median

opinion. In the vertex gadget, there are vertex agents with public

opinion 1 who may change their opinion. The edge gadget contains

edge agents again with initial opinion 1 who are connected to

their respective vertex agents and may change their opinion if both

neighboring vertex agents do so as well. Finally, the pivot gadget

contains many agents with public opinion 1 who may deviate to

0 as soon as one of the edge agents does. This can be realized in

a way that the existence of a suitable vertex cover guarantees a

suitable selection of (vertex) agents and vice versa. We proceed

0

0

1

1𝑎

0

0

1

1𝑎

0

0

1

1𝑎

.

.

.

Vertex Gadget

1

1

1

1

1

1

Edge Gadget

.

.

.

𝑏 1

1

1

1𝑑

1

1

1

1𝑑

1

1

1

1𝑑

Pivot Gadget

𝑐

.

.

.

Figure 2: The gadgets of the reduction used in the proof of

Theorem 7.1. The labels of the agents are the initial opinions.

The vertex gadget includes |𝑉 | many pairs of agents, the edge

gadget |𝐸 | many agents, and the pivot gadget 𝑋 many pairs

of agents. The 𝑌 many dummy agents are not shown.

with a detailed description of the gadgets. The median weight of

each agent is 1, and the weights of the intrinsic opinions are 0.

The construction uses parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑋,𝑌 with 𝑎 = Δ𝑏 + 2

with Δ the maximum degree in 𝐺 , 𝑏 = (𝑋𝑐 + 2)/2, 𝑐 = 1, 𝑑 = |𝐸 |𝑐 ,
𝑋 = 2|𝑉 | + 2|𝐸 |, and 𝑌 = 2|𝑉 |. See Figure 2 for an overview.

• Vertex gadget: For each vertex 𝑣 ∈ 𝑉 , there is a vertex agent

VAgt(𝑣)with initial opinion 1 and a vertex flip agent VFAgt(𝑣)
with initial opinion 0. The agents VAgt(𝑣) and VFAgt(𝑣) are
connected with weight 𝑎.

• Edge gadget: For each edge 𝑒 ∈ 𝐸, there is an edge agent

EAgt(𝑒) with initial opinion 1. EAgt
(
{𝑢, 𝑣})

)
is connected

to the vertex agents VAgt(𝑢) and VAgt(𝑣) with edges of

weight 𝑏.

• Pivot gadget: For each 𝑖 ∈ [𝑋 ] there is one pivot agent PAgt(𝑖)
with initial opinion 1 and one pivot balance agent PBAgt(𝑖)
with initial opinion 0. Each pivot agent is connected to each

edge agent with weight 𝑐 . Moreover, PAgt(𝑖) is connected to
PBAgt(𝑖) with weight 𝑑 .

• Dummy agents: For each 𝑖 ∈ [𝑌 ] there is one dummy agent

DAgt(𝑖) with initial opinion 1. Each dummy agent is con-

nected to each other dummy agent with weight 1, i.e., the

dummy agents form a clique, and the dummy agents are not

connected to any other agent.

Given this construction, one can verify that the median can be

stabilized by increasing the median weight of 𝑘 agents if and only

if there is a 𝑘 vertex cover in 𝐺 . □

Our final corollary shows that the large edge weights used in

the reduction of Theorem 7.1 are not necessary.

Corollary 7.2. StableMedian is NP-complete even if 𝜷 = 1.
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