
Enhancing Lifelong Multi-Agent Path-finding by Using
Artificial Potential Fields

Extended Abstract

Arseniy Pertzovsky
Ben-Gurion University of the Negev

Beer Sheva, Israel
arsenip@post.bgu.ac.il

Roni Stern
Ben-Gurion University of the Negev

Beer Sheva, Israel
roni.stern@gmail.com

Ariel Felner
Ben-Gurion University of the Negev

Beer Sheva, Israel
felner@bgu.ac.il

Roie Zivan
Ben-Gurion University of the Negev

Beer Sheva, Israel
zivanr@bgu.ac.il

ABSTRACT
We explore the use of Artificial Potential Fields (APFs) to solve
Lifelong Multi-Agent Path Finding (LMAPF) problems. In LMAPF, a
team of agents must move to their goal locations without collisions,
and new goals are generated upon arrival. We propose methods
for incorporating APFs in a range of LMAPF algorithms, including
Prioritized Planning and MAPF-LNS2. Experimental results show
that using APF yields up to a 7-fold increase in overall system
throughput for LMAPF.

KEYWORDS
Multi-agent Pathfinding, Artificial Potential Fields, Multi-robot Path
Planning

ACM Reference Format:
Arseniy Pertzovsky, Roni Stern, Ariel Felner, and Roie Zivan. 2025. En-
hancing Lifelong Multi-Agent Path-finding by Using Artificial Potential
Fields: Extended Abstract. In Proc. of the 24th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan,
USA, May 19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
Artificial Potential Fields (APFs) [4] is a physics-inspired approach
for the deployment of mobile agents in an environment with ob-
stacles. Typically, obstacles and other agents exert repulsive forces
while the goal applies an attractive force [5]. APFs have been used
to solve many motion planning problems [2, 3, 10], with successful
applications in obstacle avoidance of an unmanned aircraft [16], col-
lision avoidance systems for automated vehicles [21] and more [10].
In this work, we explore howAPFs can be used to solve Multi-Agent
Pathfinding (MAPF) problems.

MAPF and lifelongMAPF (LMAPF) are the problems of finding
a set of paths for a group of agents such that if each agent follows
its path, it ends up in its goal location without colliding with any
other agent [19]. LMAPF is an online MAPF [20] variant in which

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

an agent receives a new goal whenever it reaches its current goal
location. Instances of MAPF exist in many fields [1, 9, 12, 17, 22].
When solving LMAPF, congested areas tend to become more and
more congested over time, resulting in a decrease in overall system
efficiency. Using APFs is a natural approach to encourage agents to
avoid such areas, adding repulsion forces not only to avoid obstacles
but also to avoid the paths of other agents. We explored the use of
APFs within existing MAPF solvers. We consider using single-agent
pathfinding algorithms to plan for individual agents under different
types of constraints. Temporal A∗ (TA∗) [18] and SIPPS [7] are the
most prevalent examples of such algorithms. We propose modified
versions of these algorithms, called TA∗+APF and SIPPS+APF, that
change the cost of agents’ actions to take into consideration the
APFs created by other agents who have already planned their paths.

We evaluated our approaches experimentally on a range of stan-
dard MAPF benchmark problems. The results show that our APF-
augmented algorithms are very effective when solving LMAPF,
yielding up to a 7-fold increase in overall system throughput.

2 DEFINITION AND BACKGROUND
A classical MAPF problem is defined by a tuple ⟨𝑘,𝐺, 𝑠, 𝑔⟩ where 𝑘 is
the number of agents,𝐺 = (𝑉 , 𝐸) represents an undirected graph, 𝑠
and 𝑔 map an agent to its start and goal vertices. In every time-step,
each agent occupies a single vertex and performs a single action,
which is a function 𝑎 : 𝑉 → 𝑉 such that 𝑎(𝑣) = 𝑣 ′. A single-agent
path for agent 𝑎𝑖 , denoted 𝜋𝑖 , is a sequence of actions 𝜋𝑖 that is
applicable starting from 𝑠𝑖 and ends up in𝑔𝑖 . A solution to aMAPF is
a set of single-agent paths 𝜋 = {𝜋1, . . . , 𝜋𝑘 }, one per agent, that do
not conflict, meaning no two agents switch their locations or occupy
the same vertex at the same time. Lifelong MAPF (LMAPF) [6] is
an important type of online MAPF [20], where agents continuously
receive new tasks from a task assigned. The efficiency of LMAPF
algorithms is usually measured by the overall system throughput
achieved when using them, which is measured by the number of
tasks fulfilled in a given period of time [8, 11].

3 TEMPORAL A∗ WITH APFS
We propose to use APFs in TA∗ such that the resulting path not
only avoids collisions with the paths of other agents (which is a
hard constraint) but also attempts to keep distance from them by

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2711

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

considering the repulsion of their APFs. We refer to our TA∗ variant
as Temporal A∗ with APFs (TA∗+APF).

To bias the resulting path to keep distance from these paths,
TA∗+APF creates for every path 𝜋𝑖 ∈ {𝜋1, . . . , 𝜋𝑘 ′ } a repulsion APF
function 𝐴𝑃𝐹𝑖 that maps every location-time pair (𝑣, 𝑡) to a real
number representing the added penalty incurred by planning to
occupy 𝑣 at time 𝑡 . The APF induced by agent 𝑎𝑖 on location 𝑣 and
time 𝑡 is computed as follows:

𝐴𝑃𝐹𝑖 (𝑣, 𝑡) =
{
0 if 𝑑 (𝑣, 𝜋𝑖 [𝑡]) ≥ 𝑑𝑚𝑎𝑥

𝑤 · 𝛾−𝑑 (𝑣,𝜋𝑖 [𝑡]) otherwise
(1)

where 𝑑𝑚𝑎𝑥 , 𝛾 , and𝑤 are predefined parameters and 𝑑 (𝑣, 𝑡, 𝜋𝑖 [𝑡])
is the minimal distance between 𝑣 and 𝜋𝑖 [𝑡]. The 𝑤 parameter
controls the strength of the repulsion, 𝛾 controls the rate of decay,
i.e., how fast its intensity of the repulsion declines while moving
away from its source, and 𝑑𝑚𝑎𝑥 defines how far away from 𝑣𝑖 the
repulsion affects the cost. To aggregate all the APFs we used a
simple sum. That is, the APF cost of moving into location 𝑣 at time
is

𝑐𝑜𝑠𝑡𝐴𝑃𝐹 (𝑣, 𝑡) =
∑︁

𝑖∈{1,...,𝑘 ′ }
𝐴𝑃𝐹𝑖 (𝑣, 𝑡) (2)

We chose to use our APF-inspired cost function when computing
the 𝑔 value of a search node, as follows. Let 𝑐𝑜𝑠𝑡 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑛) be the
cost of moving the agent from 𝑝𝑎𝑟𝑒𝑛𝑡 to𝑛, and let (𝑣, 𝑡) be the vertex
and time-step that node 𝑛 represents. In TA∗+APF we compute the
𝑔(𝑛) as follows:

𝑔(𝑛) = 𝑔(𝑝𝑎𝑟𝑒𝑛𝑡) + 𝑐𝑜𝑠𝑡 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑛) + 𝑐𝑜𝑠𝑡𝐴𝑃𝐹 (𝑣, 𝑡) (3)

TA∗+APF runs TA∗ according to 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛), using this
modified 𝑔(𝑛) function.

4 SIPPS WITH APFS
A more recent state-of-the-art low-level solver in multiple MAPF
algorithms is SIPPS [7]. First, SIPPS sorts the open list according
to 𝑐 (𝑛), which tracks the number of soft collisions (violated soft
constraints caused by a collision with another path). Then, the
secondary sort (between the nodes with the same 𝑐 (𝑛) value) is
executed according to 𝑓 (𝑛) as in TA∗. The 𝑔(𝑛) component equals
the lowest value in the node’s time interval. This way, SIPPS ensures
that the found pathminimizes the number of soft collisions.We refer
to our SIPPS variant as SIPPS with APFs (SIPPS+APF). Because the
sorting of the open list in SIPPS+APF is executed according to two
components, first 𝑐 (𝑛) and then 𝑓 (𝑛), we explored incorporating
APFs separately in each of these components. The final formal
definition is presented as follows.

𝑐𝑜𝑠𝑡𝐴𝑃𝐹 (𝑛) = max
𝑡 ∈[𝑡𝑛𝑠𝑡𝑎𝑟𝑡 ,𝑡𝑛𝑒𝑛𝑑)

∑︁
𝑖∈{1,...,𝑘 ′ }

𝐴𝑃𝐹𝑖 (𝑣, 𝑡) (4)

Where 𝐴𝑃𝐹𝑖 (𝑣, 𝑡) is defined in TA∗+APF, and [𝑡𝑛𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑛𝑒𝑛𝑑) is the
current safe interval of the 𝑛 node. 𝑡𝑛𝑠𝑡𝑎𝑟𝑡 and 𝑡

𝑛
𝑒𝑛𝑑

are the beginning
and the end time-steps of the interval. In other words, 𝑐𝑜𝑠𝑡𝐴𝑃𝐹 (𝑛)
represents the highest APFs an agent can encounter during its time
interval. In SIPPS+APF we compute the 𝑔(𝑛) and 𝑐 (𝑛) as follows:

𝑔(𝑛) = 𝑡𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐴𝑃𝐹 (𝑛) (5)

𝑐 (𝑛) = 𝑐𝑜𝑢𝑛𝑡_𝑠𝑜 𝑓 𝑡_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 (𝑛) + 𝑐𝑜𝑠𝑡𝐴𝑃𝐹 (𝑛) (6)

SIPPS+APF runs SIPPS and first prioritizes nodes according to small
𝑐 (𝑛) values. In case of a tie, it moves to the secondary priority and
prefers nodes with smaller 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛).

5 EXPERIMENTAL STUDY
We conducted an experimental evaluation comparing the use of
APFs within PrP [18], LNS2 [7], PIBT [15], LaCAM [13], and
LaCAM∗ [14], where PrP and LNS2 are implemented twice: once
with TA∗ and once with SIPPS. All experiments were performed on
four different maps from the MAPF benchmark [19]. The number of
agents used in our experiments varied from 50 to 450. We executed
25 random instances per every number of agents, map, and algo-
rithm. The APF parameters used were𝑤 = 1, 𝑑𝑚𝑎𝑥 = 4, and 𝛾 = 2
for TA∗+APF, and𝑤 = 0.1, 𝑑𝑚𝑎𝑥 = 3, and 𝛾 = 3 for SIPPS+APF. 1

Figure 1: LMAPF: Average Throughput. Dashed lines - APF-
enhanced; Solid lines - no APFs

As can be seen in Figure 1, the use of APFs significantly increases
the throughput of all other algorithms in all maps. For example, in
the empty-32-32 grid, LNS2 with TA∗+APF reaches a throughput
of approximately 1400 with 450 agents, which is approximately
7 times more than the throughput of vanilla LNS2 for the same
number of agents, and it significantly outperforms other baselines.

6 CONCLUSION AND FUTUREWORK
We investigated whether MAPF can be solved efficiently using
artificial potential fields (APFs). We proposed using APFs in TA∗

and in SIPPS, key components of many MAPF algorithms. In the
future, we want to explore more efficient ways to incorporate APFs
into PIBT and LaCAM algorithms.
1The adaptation of APFs for PIBT, LaCAM, and LaCAM∗ did not result in any good
performance. Hence we do not report it here.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2712

REFERENCES
[1] Roman Barták, Jiří Švancara, Věra Škopková, David Nohejl, and Ivan Krasičenko.

2019. Multi-agent path finding on real robots. AI Communications (2019).
[2] Robert Daily and David M Bevly. 2008. Harmonic potential field path planning

for high speed vehicles. In 2008 American Control Conference. IEEE, 4609–4614.
[3] Johan Hagelback and Stefan Johansson. 2009. A multi-agent potential field-based

bot for a full RTS game scenario. In AAAI, Vol. 5. 28–33.
[4] Oussama Khatib. 1986. The potential field approach and operational space

formulation in robot control. In Adaptive and Learning Systems: Theory and
Applications. Springer, 367–377.

[5] Yoram Koren and Johann Borenstein. 1991. Potential field methods and their
inherent limitations for mobile robot navigation. In ICRA. 1398–1404.

[6] Jiaoyang Li, Zhe Chen, Daniel Harabor, P Stuckey, and Sven Koenig. 2021. Any-
time multi-agent path finding via large neighborhood search. In IJCAI.

[7] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J Stuckey, and Sven Koenig. 2022.
MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large Neighbor-
hood Search. In AAAI.

[8] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Ku-
mar, and Sven Koenig. 2021. Lifelong Multi-Agent Path Finding in Large-Scale
Warehouses. AAAI (May 2021).

[9] Hang Ma, Jingxing Yang, Liron Cohen, T. K. Satish Kumar, and Sven Koenig. 2017.
Feasibility Study: Moving Non-Homogeneous Teams in Congested Video Game
Environments. In AIIDE.

[10] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser. 2016.
Heuristic approaches in robot path planning: A survey. Robotics and Autonomous
Systems 86 (2016), 13–28.

[11] JonathanMorag, Roni Stern, and Ariel Felner. 2023. Adapting to Planning Failures
in Lifelong Multi-Agent Path Finding. In SoCS.

[12] Robert Morris, Corina S Pasareanu, Kasper Søe Luckow, Waqar Malik, Hang Ma,
TK Satish Kumar, and Sven Koenig. 2016. Planning, Scheduling and Monitoring
for Airport Surface Operations.. In AAAI Workshop: Planning for Hybrid Systems.

[13] Keisuke Okumura. 2023. Lacam: Search-based algorithm for quick multi-agent
pathfinding. In AAAI, Vol. 37. 11655–11662.

[14] Keisuke Okumura. 2023. LaCAM: Search-Based Algorithm for Quick Multi-Agent
Pathfinding. AAAI (Jun. 2023).

[15] Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. 2022.
Priority inheritance with backtracking for iterative multi-agent path finding. AI
310 (2022), 103752.

[16] Hamed Rezaee and Farzaneh Abdollahi. 2012. Adaptive artificial potential field
approach for obstacle avoidance of unmanned aircrafts. In AIM. IEEE, 1–6.

[17] Oren Salzman and Ron Zvi Stern. 2020. Research challenges and opportunities
in multi-agent path finding and multi-agent pickup and delivery problems blue
sky ideas track. In AAMAS.

[18] David Silver. 2005. Cooperative Pathfinding. In AIIDE.
[19] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski,
and Roman Bartak. 2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. In SoCS. 151–158.

[20] Jiří Švancara, Marek Vlk, Roni Stern, Dor Atzmon, and Roman Barták. 2019.
Online multi-agent pathfinding. In AAAI.

[21] Nurbaiti Wahid, Hairi Zamzuri, Mohd Azizi Abdul Rahman, Satoshi Kuroda, and
Pongsathom Raksincharoensak. 2017. Study on potential field based motion
planning and control for automated vehicle collision avoidance systems. In ICM.
208–213.

[22] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. 2008. Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI magazine 29, 1
(2008), 9–9.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2713

	Abstract
	1 Introduction
	2 Definition and Background
	3 Temporal A* with APFs
	4 SIPPS with APFs
	5 Experimental Study
	6 Conclusion and Future Work
	References

