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ABSTRACT
Diverse multi-agent teams have the potential to solve complex
tasks by learning effective teaming through reinforcement learning
(RL). The high variability of interactions across team compositions
poses scalability and real-world applicability challenges for online
methods, highlighting the need for offline approaches that learn
from pre-collected datasets. However, it is challenging to effec-
tively leverage diverse data, adapt across team compositions using
only offline data, and maintain decentralization during online de-
ployment. To address these challenges, we present Heterogeneous
Graph Conditioned Diffusion (HGCD), a multi-agent diffusion
model that leverages the conditional generative modeling abilities
of diffusion and heterogeneous multi-agent communication to learn
generalizable policies offline, while ensuring decentralized execu-
tion online. We demonstrate the effectiveness of our method on
StarCraft II Multi-Agent Challenge v2 (SMACv2) tasks, achieving
superior generalization performance over prior state-of-the-art.
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1 INTRODUCTION
Heterogeneous teaming is essential learning to solve complex real-
world problems where agents with diverse capabilities must work
together to achieve shared objective [10, 16]. One prominent area
is in search and rescue missions [7], where different types of robots
can be deployed to leverage their unique sensing and mobility
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capabilities: drones for surveillance [23], ground robots for recon-
naissance, and marine robots for underwater missions. In critical
settings like this, directly interacting with the environment poses
safety risks, deployment can be costly [14, 17], and decentralization
capabilities are essential for robustness. In these scenarios, offline
multi-agent reinforcement learning (MARL) is valuable for enabling
agents to learn effective teaming from datasets. However, gener-
alization remains a challenge, as the offline data must sufficiently
capture the diversity of interactions across various heterogeneous
team compositions [12]. When the data lacks this diversity, learn-
ing becomes significantly more difficult, highlighting the need for
methods that can adapt policies to unseen team compositions. We
address these challenges through a diffusion-based offline Meta-
MARL architecture, integrating heterogeneous communication for
diverse and decentralized multi-agent coordination.

2 METHOD
Communication Message Encoding. We integrate multi-agent
communication [4, 18, 21] with graph-based mechanisms [15, 16]
into diffusion, learning to extract task-relevant information from
the heterogeneous graph structure, G𝑚

𝜏 . We aim to learn from of-
fline data samples 𝑑𝑚 =

[
G𝑚
𝜏 ,R𝑚

𝜏 , ā𝑚𝜏 , ō𝑚𝜏
]
, containing reward,

action and observation trajectories where𝑚 specifies the team com-
position. We follow the Denoising Diffusion Probabilistic Model
(DDPM) formulation [8, 19, 20] extended to the reinforcement learn-
ing [1, 13] and multi-agent setting [24]. At each diffusion time-step
𝑘 , each agent 𝑖 of class 𝑗 encodes its observation histories as a set
of messages, 𝑚𝑖 𝑗

𝑟 = MessageEncoder𝑖𝑟
(
x𝑖 𝑗
𝑘

)
, across 𝑟 layers where

x𝑖 𝑗
𝑘
=

[
𝑜
𝑖 𝑗

1:ℎ | |𝑥
𝑖 𝑗

ℎ+1:ℎ+𝐻

]
. Here, each 𝑥𝑖 𝑗𝑡 is a time-step in the diffusion

horizon to be noised during training and denoised during sampling,
extending 𝐻 steps beyond its history ℎ. Agents undergo message-
passing via heterogeneous graph-based communication, then ap-
ply Heterogeneous Graph Attention [16] with class based node
parameters,𝑊𝑗 , class-to-class edge parameters,𝑊𝑙→𝑗 , and atten-
tion parameters,𝑊 att

𝑙→𝑗
. First, the normalized attention coefficients,

𝛼
𝑙→𝑗

𝑖𝑘
= softmax𝑘

(
𝜎′

(
𝑊 𝑎𝑡𝑡

𝑙→𝑗

[
𝑊𝑗𝑚

𝑖 𝑗 ∥𝑊𝑙→𝑗𝑚
𝑘𝑙
] ))

, are computed
to weigh each neighbor 𝑘’s message. Then, the communication
embeddings, 𝑧𝑖 𝑗𝑟 = 𝜎

(
𝑊𝑗𝑚

𝑖 𝑗
𝑟 +∑

𝑙∈C
∑
𝑘∈𝑁𝑙 (𝑖 ) 𝛼

𝑙→𝑗

𝑖𝑘
𝑚
𝑘𝑙
𝑟

)
, are com-

puted. These embeddings function as learned representations of
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Figure 1: Overview of the architecture for Heterogenous Graph Conditioned Diffusion (HGCD).

the task, as heterogeneous communication provides a suitable basis
of task-relevant information about the team composition.

Communication ConditionedDiffusion. We leverage the condi-
tional generative modeling ability of diffusion models to condition
not only on constraints like high-returns, as in prior work [1, 24],
but on the communication embeddings to provide better ground-
ing for trajectory generation. This is achieved through classifier-
free guidance sampling [9], with the predicted noise computed as
shown in Eq. 1, where 𝜔 is the guidance scale coefficient, and 𝜃

parametrizes both unconditional and conditional diffusion models.

𝜖 := 𝜖𝜃

(
x𝑖 𝑗
𝑘
, ∅, 𝑘

)
+ 𝜔

(
𝜖𝜃

(
x𝑖 𝑗
𝑘
,
(
𝑧
𝑖 𝑗
𝜏 , 𝑅𝜏

)
, 𝑘

)
− 𝜖𝜃

(
x𝑖 𝑗
𝑘
, ∅, 𝑘

))
(1)

During the denoising process, Eq. 1 is applied iteratively until
x𝑖 𝑗0 :=

[
𝑜
𝑖 𝑗

1:ℎ
����𝑜𝑖 𝑗

ℎ+1:ℎ+𝐻

]
retrieves each agent’s planned trajectory.

This guides each agent’s diffusion process towards sequences that
satisfy the condition of achieving high return within their team
composition. Decision-making is inferred via an inverse dynamics
model [1], parameterized by 𝜙 , which estimates each agent’s action
as 𝑎𝑖 𝑗𝑡 := 𝑓𝜙

(
𝑜
𝑖 𝑗
𝑡 , 𝑜

𝑖 𝑗
𝑡+1

)
, enabling the transition from 𝑜

𝑖 𝑗
𝑡 to 𝑜𝑖 𝑗

𝑡+1.

Diverse Offline Meta-MARL. Conditionally sampling trajecto-
ries requires learning the conditional data distributions across
team compositions, which is enabled through the loss objective
L𝐷

(
𝜖, x̄𝑚

𝑘
, z̄𝑚𝜏 , 𝑅𝑚𝜏 , 𝛽, 𝑘 ;𝜃

)
=
𝜖 −𝜖𝜃

(
x̄𝑚
𝑘
, (1− 𝛽)

(
z̄𝑚𝜏 , 𝑅𝑚𝜏

)
+ 𝛽∅, 𝑘

)2

of the diffusion model. Additionally, the inverse dynamics model
is learned through the loss objective L𝐼

(
ā𝑚𝜏 , ō𝑚𝜏−1 , ō

𝑚
𝜏 ;𝜙

)
=
ā𝑚𝜏 −

𝑓𝜙
(
ō𝑚𝜏−1 , ō

𝑚
𝜏

)2. Both are combined and applied across team com-
positions, formulating the offline meta-reinforcement learning ob-
jective with both offline outer and inner loops [2], Ltrain (𝜃, 𝜙) =

E𝑑𝑚∼D𝑚

[
E z̄𝑚𝜏 ,𝜖,𝑘,𝛽

[
L𝐷

(
𝜖, x̄𝑚

𝑘
, z̄𝑚𝜏 , 𝑅𝑚𝜏 , 𝛽, 𝑘

) ]
+ L𝐼

(
ā𝑚𝜏 , ō𝑚𝜏−1 , ō

𝑚
𝜏

) ]
.

The outer-loop, consists of the overall architecture, learning to gen-
erate high-return trajectories across team compositions, and the
inner-loop consists of the HetGAT layers that learn to produce
communication embeddings for enhanced adaptability.

3 EVALUATION AND RESULTS
We evaluate on two SMACv2 [5] scenarios with 5 agent teams span-
ning 20 distinct team compositions across 3 classes. Offline training
uses OG-MARL [6] datasets with Percentage Filtering [3] to address

the abundance of suboptimal trajectories [11]. Win rates are mea-
sured over fifty online episodes per seed for each team composition,
using three seeds. Baseline comparisons include: Behavior Cloning
(BC) and Implicit Constraint Q-Learning [22] which assume decen-
tralized execution, and Multi-Agent Diffusion [24] which can be
executed both centralized and decentralized. Experiments cover
centralized (C) and decentralized (D) execution modes, as well as
full data (F) and limited data (L) training with seen and unseen team
compositions. As shown Table 1, our method results in considerable
performance improvements over baselines.

Baseline

terran 5 vs. 5 zerg 5 vs. 5

C/F C/L D/F D/L C/F C/L D/F D/L

BC - - 185.68 157.86 - - 141.87 164.24
IQL - - 2.87 9.06 - - 78.79 26.85
MAD 25.39 87.58 76.44 229.30 18.70 17.20 38.65 82.20

All 25.39 87.58 2.13 1.97 18.70 17.20 25.67 1.10

Table 1: Mean percent improvement of HGCD over baselines.

4 DISCUSSION AND CONCLUSION
The increased performance of HGCD highlights its ability to adapt
decision-making for more effective trajectory across diverse team
compositions. In limited data settings, HGCD leverages the struc-
tural information in the heterogeneous graph network to capture
relation interactions among different agent classes, facilitating gen-
eralization beyond the compositions encountered during training.
This is particularly important in heterogeneous multi-agent sys-
tems where exhaustive data collection is impractical. Addition-
ally, improvements in decentralized settings demonstrate effective
handling of partial observability and limited global information.
Notably, surpassing MAD, the closest decentralized baseline, un-
derscores the advantage of communication over teammate mod-
eling, advancing state-of-the-art decentralized diffusion methods.
These results highlight the potential of integrating heterogeneous
graph-based communication within diffusion models to enhance
coordination and generalization in diverse multi-agent systems.
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