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ABSTRACT
Robots navigating complex environments must manage uncertainty
from sensor noise, environmental changes, and incomplete infor-
mation, with different tasks requiring varying levels of precision
in different areas. For example, precise localization may be cru-
cial near obstacles but less critical in open spaces. We present
GUIDE (Generalized Uncertainty Integration for Decision-Making
and Execution), a framework that integrates these task-specific
requirements into navigation policies via Task-Specific Uncertainty
Maps (TSUMs). By assigning acceptable uncertainty levels to dif-
ferent locations, TSUMs enable robots to adapt uncertainty man-
agement based on context. When combined with reinforcement
learning, GUIDE learns policies that balance task completion and
uncertainty management without extensive reward engineering.
Real-world tests show significant performance gains over methods
lacking task-specific uncertainty awareness.
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1 INTRODUCTION
Robots encounter varying degrees of uncertainty in sensor mea-
surements, motion models, and environmental conditions. Criti-
cally, not all tasks require uniform levels of certainty: for instance,
a robot navigating tight corridors must localize precisely, while
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crossing open spaces may tolerate higher uncertainty. This context-
dependent nature of uncertainty requirements motivates a need for
policies that can selectively reduce or accept uncertainty based on
task-specific demands.

Existingmethods either aim tominimize uncertainty everywhere
[8, 9, 22] or enforce fixed thresholds [5, 26], often leading to in-
efficiency when uncertainty requirements vary within the same
task. Some approaches attempt a uniform trade-off between task
performance and uncertainty management [24, 30, 33], but they
still treat uncertainty needs as globally homogeneous. Moreover,
reward engineering or manual tuning [4, 40] is frequently required
to capture task constraints. In parallel, extensive work in proba-
bilistic robotics [7, 11, 14, 32] addresses uncertainty but does so
uniformly across the workspace. Reinforcement learning (RL) has
proven effective for navigation [23, 34, 35] but seldom integrates
task-specific uncertainty considerations [6, 19]. Techniques that
penalize high-uncertainty actions [10, 17, 29, 39] or use Bayesian
RL [1, 2, 15, 37] still adopt a one-size-fits-all approach. Risk-aware
planning and risk-sensitive RL [13, 16, 20, 31, 38] similarly rely
on uniform thresholds. Although language-conditioned methods
[3, 21, 28] broaden a robot’s task repertoire, they lack a direct mech-
anism to represent and leverage region-specific uncertainty limits.

We address this gap by introducing Task-Specific Uncertainty
Maps (TSUMs) that encode allowable uncertainty levels across dif-
ferent regions of the environment for a given task. TSUM captures
the context-dependent value of certainty, enabling robots to focus on
precision only where it is crucial. We present a policy-conditioning
framework, GUIDE (Generalized Uncertainty Integration for Decis-
ion-Making and Execution), which integrates TSUMs into naviga-
tion policies. We adapt Soft Actor-Critic (SAC) to GUIDEd SAC,
balancing task objectives and uncertainty reduction without ad-hoc
reward engineering.

2 METHODOLOGY
Consider a robot operating in a continuous state space 𝑆 with a
continuous action set 𝐴. Given a navigation task 𝜏 specified in nat-
ural language, the objective is to learn a policy 𝜋 (𝑎 | 𝑠) that jointly
satisfies task objectives and task-specific uncertainty requirements.
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Figure 1: During pretraining, semantic and spatial embeddings are aligned via triplet loss and attention. At deployment, TSUMs
derived from task descriptions and environment data condition the navigation policy for task-aware uncertainty management.

Task-Specific Uncertainty Maps (TSUM): A TSUM is defined as
𝑈 𝜏 (𝑙), a scalar representing the acceptable uncertainty at location
𝑙 . Formally, 𝑈 𝜏 (𝑙) = 𝑤Φ Φ𝜏 (𝑙) +𝑤C C𝜏 (𝑙) +𝑤E E(𝑙), where Φ𝜏 (𝑙)
captures the relevance of 𝑙 for the task, C𝜏 (𝑙) encodes constraints
such as safety and legal restrictions, and E(𝑙) reflects environmental
factors. Task semantics are extracted from the natural language
specification 𝜏 using a RoBERTa-based parser [18], which identifies
subtasks and constraints. Each location 𝑙 is mapped to a spatial
embedding via a neural network that processes coordinate and
environment features. Alignment between these spatial embeddings
and the text-derived subtasks is enforced through a triplet loss that
brings related concepts closer in embedding space while separating
unrelated pairs. An attention mechanism [36] weights the most
relevant subtasks or constraints for each location, producing a
single scalar 𝑈 𝜏 (𝑙) indicating how critical it is to maintain low
uncertainty at 𝑙 . Figure 1 (center) represents an example TSUM.

Policy Conditioning: Once the TSUM is generated, the robot’s
state is augmented with both the TSUM value and the robot’s
current uncertainty. Concretely, if 𝑠 denotes the original state, then
the augmented state is 𝑠 = [𝑠, 𝑈 𝜏 (𝑠), 𝑢 (𝑠)], where 𝑢 (𝑠) represents
the robot’s current state-estimation uncertainty at 𝑠 . The policy
𝜋 (𝑎 | 𝑠) thus explicitly observes how precise the localization at 𝑠
needs to be, enabling actions that selectively reduce uncertainty in
regions with stricter tolerances.

To implement this, we adopt a variant of SAC [12], referred to
as GUIDEd SAC (G-SAC). Standard SAC updates the policy and
Q-value networks to maximize expected reward while promoting
exploratory behavior via an entropy term. In G-SAC, the Q-function
and policy networks receive 𝑠 as input, allowing them to incorpo-
rate the TSUM-derived acceptable uncertainty as part of the state.
By conditioning on𝑈 𝜏 (𝑠), the learned policy mitigates uncertainty
precisely in those regions where the task demands high localization
accuracy, while avoiding unnecessary effort in areas where uncer-
tainty can be higher without affecting task success–eliminating the
need for extensive reward tuning or ad hoc penalty terms, as the
TSUM itself encodes spatially varying uncertainty requirements.

3 EXPERIMENTS AND RESULTS
We evaluate GUIDE on real-world navigation tasks using an au-
tonomous surface vehicle (ASV) operating in a lake with obstacles

and environmental disturbances. By default, the ASV employs noisy
state estimation (low cost, high uncertainty) but can temporarily
request precise GPS data at an added penalty [25, 27].

Baselines and Ablations. We compare GUIDE (implemented as
G-SAC) against: SAC (no TSUMs), SAC-P (penalized uncertainty),
B-SAC (bootstrapped uncertainty), CVaR (risk-sensitive RL), RAA
(risk-aware planning), and HEU (handcrafted policy that switches
to GPS near obstacles). All methods share the same environment
observations and cost structure, providing a fair evaluation of task-
specific uncertainty handling.

Performance Comparison. Table 1 summarizes Task Completion
Rate (TCR) and reward (R) for four representative tasks: Goal Reach-
ing (GR), Avoid (AV), Perimeter (PT), and Multi-Goal (MG). G-SAC
achieves the highest TCR and reward in all tasks, demonstrating
safer navigation, fewer collisions, and more cost-effective use of
precise GPS. Figure 1 (right) illustrates how G-SAC requests exact
localization only in areas where the Task-Specific Uncertainty Map
(TSUM) dictates tighter uncertainty requirements.

GR AV PT MG
Method TCR R TCR R TCR R TCR R

SAC 68.9 144.1 71.3 177.8 44.3 84.4 31.3 124.4
SAC-P 84.3 241.8 83.2 199.2 51.6 132.8 42.9 135.2
B-SAC 74.2 189.2 79.6 277.6 56.3 170.4 37.7 122.4
CVaR 66.8 134.6 78.4 220.4 41.6 32.8 30.9 129.2
RAA 35.3 26.9 51.3 107.8 39.8 111.2 19.5 100.4
HEU 71.3 176.1 62.4 174.4 49.6 146.8 42.1 155.2
G-SAC 92.0 410.4 88.7 482.2 83.7 594.6 81.7 511.4

Table 1: Task Completion Rate (TCR) and average reward (R)
for different tasks. G-SAC outperforms all baselines.
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