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ABSTRACT
With the increasing number of autonomous platforms in everyday
life, forming coordinated teams of agents becomes vital. To solve
this, we propose BERTeam, an algorithm inspired by Natural Lan-
guage Processing. BERTeam trains a transformer-based deep neural
network to select from a population of agents. It can integrate with
coevolutionary deep reinforcement learning, which evolves a di-
verse set of players to choose from.We evaluate BERTeam inMarine
Capture-The-Flag, and find it learns non-trivial team compositions
that outperform unknown opponents. In this setting, we find that
BERTeam outperforms MCAA, another team selection algorithm.
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1 INTRODUCTION
We inspect multiagent adversarial team games, characterized by
an environment with multiple teams of agents, each working to
achieve a team goal. Each episode results in an outcome, a set of
teams that ‘win’. Examples of scenarios that can be formulated in
this way include pursuit-evasion [5, 13, 28, 33], robotic football
[12, 18, 29], and robotic capture-the-flag [23], as well as real-world
applications like search-and-rescue and autonomous surveillance.

A crucial problem in this setting is selecting coordinated teams
from a set of potential members to outperform unknown opponents.
This is challenging since optimal team selection must consider both
intra-team and inter-team interactions. Researchers have addressed
this with various approaches, such as finding Nash Equilibria with
double oracle methods [21] and predicting game outcomes [33].

Additionally, agents often must learn individual policies, increas-
ing the problem’s complexity. For this task, evolutionary algorithms
have been used for decades due to their adaptability and perfor-
mance. Self-play [15, 16], used in adversarial settings, is a central
concept in these algorithms, creating training data against a variety
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of opponents by using current and past versions of agents as oppo-
nents. Coevolutionary deep reinforcement learning [7, 19], which is
used in multiagent settings, blends an evolutionary approach with
Reinforcement Learning (RL) to optimize a population of agents.

2 TEAM SELECTION IN MULTIAGENT GAMES
Preliminaries: A Markov Decision Process (MDP) is a framework
capturing various optimization tasks, described by state space 𝑆 ,
action space 𝐴, transition function T (𝑆 | 𝑆 ×𝐴), reward function
R : 𝑆×𝐴×𝑆 → R, and discount factor𝛾 ∈ [0, 1). AnMDP agent is de-
scribed by its policy𝜋 (𝐴 | 𝑆). The sequence (𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), . . .
is referred to as a trajectory, where 𝑎𝑖 ∼ 𝜋 (·|𝑠𝑖 ), 𝑠𝑖 ∼ T (·|𝑠𝑖−1, 𝑎𝑖−1),
and 𝑟𝑡 = R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). An agent’s objective is choosing 𝜋 to maxi-
mize the expected return: E[∑𝑖 𝛾

𝑖𝑟𝑖 ] over trajectories. RL methods
solve MDPs by sampling trajectories to optimize a policy’s expected
return. Deep RL methods use deep neural networks to do this.

We are concerned with 𝑘v𝑘 adversarial games, which can be
formalized as an MDP for each agent, with the actions of all other
agents considered in T . Agents are partitioned into teams, and an
outcome evaluation decides which teams ‘won’ a specific trajectory.
We expect an agent’s MDP rewards to correlate with its team’s
outcome. This ensures agents with high rewards are likely to be
on winning teams. Within this framework, our goal is to train and
select teams of agents that are strong against a variety of opponents.
BERTeam Algorithm: We first consider team selection from a
fixed set of agents. We view this as sequence generation by assign-
ing each agent a token, and equating a size 𝑘 team to a length 𝑘

token sequence. Thus, we can use a transformer [32], a sequence-
to-sequence deep neural network widely used in Natural Language
Processing (NLP) to create a context-dependent embedding of a
sequence [3, 4, 17, 20]. Transformers are encoder-decoder models
that take an input and target sequence, and return an embedded
vector for each element of the target [1, 6, 30]. A final layer con-
verts each embedding into a probability distribution over tokens,
allowing sequence generation by repeated prediction. BERT [8]
is a technique that trains a transformer with Masked Language
Modeling (MLM) [31]. This teaches the model to predict masked
tokens with bidirectional context, improving robustness [8, 11].

We design BERTeam by adapting BERT’s algorithm for team
selection. BERTeam takes in a partially masked sequence of agents
(and any observations), and predicts agents to fill masked positions.
We train BERTeam to imitate a distribution of ‘good’ teams, au-
tomatically generated from games between teams sampled from
BERTeam.We include winning teams in a replay buffer dataset with
inverse probability weighting [14] to ensure a team’s contribution
is proportional to its success rate against BERTeam’s distribution.
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Figure 1: Training of BERTeam alongside coevolutionary RL

To learn individual agent policies alongside BERTeam, we use a
coevolutionary RL algorithm, trained with sample games used in
BERTeam’s training (Figure 1). We use the algorithm in [7], with
some caveats: To derive individual fitness from team outcomes,
we assign each team a captain, and assume the team is selected
conditional to the captain’s inclusion. We consider each game as
between the captains and use Elo [10] for individual fitness. We also
stochastically replace only a few agents per generation so that most
information BERTeam learns stays relevant between generations.

3 EXPERIMENTS
We empirically validate BERTeam with Aquaticus, a 𝑘v𝑘 Marine
Capture-The-Flag (MCTF) game [23]. In particular, we test on 2v2
games in Pyquaticus, a simulation of Aquaticus [2]. The team size al-
lows easier analysis of the total distributions learned by BERTeam.1
Fixed Policy Agents: We test BERTeam with seven fixed pol-
icy agents included in Pyquaticus: Weak/medium/strong offensive
agents (agents 0, 1, 2) and defensive agents (agents 3, 4, 5), and one
random agent (agent 6). We sample games to estimate team Elos2
of all teams. We compare ranks with the predicted rank from occur-
rence in BERTeam’s total distribution (Table 1). After 15,000 games,
BERTeam correctly learns that the balanced team {2, 5} performs
the best, followed by the offensive {2, 2}. It correctly predicts the top
7 teams, though with mixed ranks. Overall, this indicates BERTeam
can learn non-trivial, diverse, and balanced team compositions.

Team True Rank/Elo BERTeam Rank/Occurrence
{2, 5} 1 1388 1 0.14
{2, 2} 2 1337 2 0.13
{2, 3} 3 1135 7 0.06
{1, 2} 4 1112 4 0.10
{0, 2} 5 1097 3 0.10
{2, 4} 6 1087 5 0.10
{2, 6} 7 1035 6 0.07
{0, 5} 8 975 13 0.03
Table 1: Comparison of true ranks and predicted ranks

Coevolving Agents: We test BERTeam trained alongside a Coevo-
lutionary RL algorithm (Figure 1). Our population is 50 PPO agents
[27], and we sample 25 games per generation. To classify agents as
defensive/aggressive, we define an aggression metric based on an
agent’s behavior in test games against fixed-policy teams. After 8000
1Our implementation, along with experiments, is available at [24–26].
2Distinguished from agent fitnesses, which are individual Elos.

generations, we find a defensive and aggressive cluster in the popu-
lation (Figure 2(a)). With this labeling, BERTeam’s learned total dis-
tribution favors a balanced team, choosing {defensive, aggressive}
73% of the time (Figure 2(b)). We calculate Elos of all possible teams
by sampling against fixed policy teams, and find BERTeam’s output
probability correlates with the Elo of each team (Figure 2(c)). Fi-
nally, the best performing team has Elo ≈ 1017, is the maximizer of
BERTeam’s total distribution, and is stronger than all fixed-policy
teams not containing agent 2.

(a) Agent clustering based
on aggression, with 36
defensive and 14 aggressive

(b) BERTeam team
composition (ordered)

(c) Correlation of BERTeam
total distribution with Elo. Lin-
ear regression yields 𝑅2 ≈ .25.

Figure 2: BERTeam learned distribution on trained agents

Comparison with MCAA: We compare our method with MCAA
[9], another team selection algorithm. MCAA partitions agents
into islands, uses the evolutionary MAP-Elites algorithm on each
island to train agents [22], then learns the proportion each island
should contribute to a team. Since MCAA decouples MAP-Elites
policy optimization from learning team selection, we hybridize this
with BERTeam and coevolution to compare four approaches. We
train each for 4000 generations, sample teams using each respective
team selection method, and use the sampled game outcomes to
estimate performance of a team generated from each algorithm
(the algorithm Elo: A[Elo]). We find that regardless of the policy
optimization method, BERTeam outperforms MCAA in team se-
lection. However, BERTeam is much more computationally costly
than MCAA, as each MCAA update takes insignificant time. This
cost can be justified by the increased performance, and by the fact
that BERTeam can train independent to the policy optimization.

Policy Team
A[Elo] Avg. update time of

Optimizer Selection Agents Team Dist.
Coevolution BERTeam 919 13 s/epoch 46 s/update
Coevolution MCAA 817 13 s/epoch ≈ 0 s/update
MAP-Elites BERTeam 883 36 s/epoch 45 s/update
MAP-Elites MCAA 809 35 s/epoch ≈ 0 s/update

Table 2: Relative performance of hybrid algorithms

4 CONCLUSION
In this paper, we introduce BERTeam, an algorithm for team selec-
tion in multiagent adversarial team games. We evaluate BERTeam
in Pyquaticus, a simulated MCTF game, and find that it effectively
learns strong non-trivial team compositions both in choosing from
fixed policy agents as well as trained alongside individual agent
policies. We find that in this setting, BERTeam outperforms MCAA,
another algorithm designed for team selection. Overall, BERTeam
is a strong team selection algorithm with roots in NLP methods.
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