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ABSTRACT
In this paper, we consider the problem of learning independent fair
policies in cooperative multi-agent reinforcement learning (MARL).
Our objective is to design multiple policies simultaneously that
optimize a welfare function for fairness. To achieve this objective,
we propose a novel Fairness-Aware multi-agent Proximal Policy
Optimization (FAPPO) algorithm, which enables each agent to learn
its policy independently while optimizing a welfare function. Un-
like standard approaches that focus on maximizing performance
metrics such as rewards, FAPPO focuses on fairness in an indepen-
dent learning setting, where each agent estimates its local value
function. Furthermore, when inter-agent communication is allowed,
we introduce an attention-based FAPPO (AT-FAPPO), which incor-
porates a self-attention mechanism to facilitate communication and
coordination among agents. This variant allows agents to share rel-
evant information during training, leading to more fair outcomes.
To demonstrate the effectiveness of the proposed methods, we
perform experiments in various environments and show that our
approach outperforms existing methods both in terms of efficiency
and equity.
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1 INTRODUCTION
Recent advances in reinforcement learning (RL) and multi-agent
RL (MARL) have significantly improved the abilities of adaptive
artificial agents to cooperate and solve complex tasks, including
autonomous vehicles [4, 11], traffic light control [15], data center
control [17], and wireless networks [8]. Despite the diverse appli-
cations of these systems, their primary focus has been mainly on
optimizing a single performance metric. However, this singular fo-
cus on performance optimization often neglects the consideration
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of fairness, particularly in scenarios where these systems impact
multiple end-users. Hence, fairness becomes a key factor for the
deployment and operation of such systems if we want the users to
trust and use the systems.

Fairness is a multifaceted concept, often framed through lenses
such as Pareto dominance, equity, symmetry, demographic parity,
and proportionality. In this work, we adopt a definition of fairness
grounded in distributive justice [7], emphasizing Pareto efficiency,
equity, and symmetry (impartiality). This definition of fairness can
be encoded into a welfare function that aggregates the utilities of
users/agents and provides a principled evaluation and comparison
of solutions based on fairness.

Several studies have focused on incorporating fairness into multi-
agent systems [1, 3], and MARL [5, 6, 19, 20]. However, these meth-
ods either focus on static environments that do not require learning
or require a specialized network architecture that learns individual
policies before optimizing fairness via a centralized leader or team
policy. In contrast, our proposed methods do not rely on a special-
ized network architecture or a hierarchical structure. Instead, we
propose a fairness-aware multi-agent Proximal Policy Optimization
(FAPPO), an extension to the independent PPO (IPPO) [16], that
learns individual policies for all agents separately in the context
of cooperative MARL and optimizes a welfare function to ensure
equitable treatment for all agents. When inter-agent communica-
tion is available, we propose an attention-based variant of FAPPO
(AT-FAPPO) by incorporating a self-attention mechanism [2, 14]
for communication.

2 FAIRNESS FORMULATION
Following the prior work on fairness in RL [10, 12, 18], we define a
fair solution as one that satisfies three properties: Pareto-dominance,
equity, and impartiality. These properties ensure that a solution is
Pareto-optimal, aligns with the Pigou-Dalton principle, and adheres
to the “equal treatment of equals" principles. To make these prop-
erties operational, we employ the generalized Gini welfare function
which satisfies these fairness properties and provides a principled
approach for fair optimization:

𝜙𝝎 (𝒙) =
𝑛∑︁
𝑖=1

𝝎𝑖𝒙
↑
𝑖
, (1)

where 𝒙 ∈ R𝑛 and 𝝎 ∈ Δ𝑛 is a fixed positive weight vector whose
components are strictly decreasing (i.e., 𝝎1 > . . . > 𝝎𝑛 > 0).
Intuitively, by assigning larger weights to smaller utility values, this
welfare functionwill yield larger scores when the utility distribution
becomes more balanced.
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Figure 1: Total rewards, CV, minimum, and maximum reward of MARL baselines, FEN, SOTO, and our proposed methods.

3 PROPOSED METHOD
We consider fully cooperative MARL tasks, where a set of agents
cooperate to solve a given task. Our optimization objective can be
formulated as

max
𝝅𝜽

𝜙𝝎 (𝑱 (𝝅𝜽 )), (2)

where 𝝅𝜽 represents the joint policy for all agents parameterized by
𝜽 , 𝑱 (𝝅𝜽 ) = E𝝅𝜽

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡
]
denotes the joint expected discounted

returns, and𝜙𝝎 is the welfare function. The objective is to maximize
the welfare utility over the joint policy 𝝅𝜽 .

To solve the problem (2), we adapt the Independent Proximal
Policy Optimization (IPPO) [16] to optimize the welfare function
𝜙𝝎 and refer to it as FAPPO. In FAPPO, each agent learns its policy
independently using PPO [9], relying solely on local observations.
Since our method learns stochastic policies, we can optimize the
welfare function 𝜙𝝎 by computing gradients using a variant of the
policy gradient theorem to update the policies as

∇𝜽𝜙𝝎 (𝑱 (𝝅𝜽 )) =∇𝑱 (𝝅𝜽 )𝜙𝝎 (𝑱 (𝝅𝜽 ))⊤ · ∇𝜽 𝑱 (𝝅𝜽 ) = 𝒘⊤
𝜎 ∇𝜽 𝑱 (𝜋𝜽 ),

where ∇𝜽 𝑱 (𝝅𝜽 ) is a 𝑛 × 𝐷 matrix representing the joint policy
gradient over the 𝑛 agents,𝒘𝜎 is a vector sorted based on the values
of 𝑱 (𝝅𝜽 ), and 𝐷 denotes the number of policy parameters.

Interestingly, in the independent learning setting, 𝑱 = (𝐽 1 (𝜋𝜃 ), . . .
𝐽𝑛 (𝜋𝜃 )), where 𝐽𝑎 is the utility of agent 𝑎. Thus, our optimization
problem (2) can be expressed as

max
𝝅𝜽

𝜙𝝎 (𝐽 1 (𝜋𝜃1 ), . . . 𝐽
𝑛 (𝜋𝜃𝑛 )),

where 𝜽 = (𝜃1, . . . , 𝜃𝑛) is the policies parameters 𝝅 = (𝜋1, . . . , 𝜋𝑛)
respectively. Using the policy gradient theorem [13], the gradient
of the utility function 𝐽𝑎 (𝜋𝜃 ) for each agent 𝑎 can be computed as,

∇𝜃 𝐽𝑎 (𝜋𝜃 ) = E𝜋𝜃
[
𝐴𝑎
𝜋𝜃

(𝑧𝑎, 𝑢𝑎)∇𝜃 log𝜋𝜃 (𝑢𝑎 | 𝑧𝑎)
]
, (3)

where 𝐴𝑎 is the advantage estimation for the agent 𝑎. As we are
in an independent learning setting, we estimate the advantage for
each agent as

∑
𝑡 (𝛾𝜆)𝑡−1𝛿𝑎𝑡 , where 𝛿

𝑎
𝑡 = 𝑟𝑡 (𝑧𝑎𝑡 , 𝑢𝑎𝑡 ) + 𝛾𝑉𝜃 (𝑧𝑎𝑡+1) −

𝑉𝜃 (𝑧𝑎𝑡 ). We use the team reward 𝑟𝑡 (𝑠𝑡 , 𝒖𝑡 ) as the per-time-step
reward 𝑟𝑡 (𝑧𝑎𝑡 , 𝑢𝑎𝑡 ) of agent 𝑎 for approximation. 𝑉𝜃 (𝑧𝑎𝑡 ) denotes the
value function associatedwith agent𝑎with local observation 𝑧𝑡 , and
𝜆 represents the temporal difference estimation of the advantage
function. Finally, for each agent 𝑎, the clipping objective becomes

E𝑧𝑎𝑡 ∼𝜌𝜋,𝑢𝑎
𝑡 ∼𝜋𝜃 ( · |𝑧𝑎𝑡 )

[
min(𝜌𝜃𝐴𝑎

𝜋𝜃
(𝑢𝑎𝑡 |𝑧𝑎𝑡 ), 𝜌𝜃𝐴𝑎𝜋𝜃 (𝑢𝑎𝑡 |𝑧𝑎𝑡 ))

]
,

where 𝜌𝜃 =
𝜋𝜃 (𝑢𝑎𝑡 |𝑧𝑎𝑡 )
𝜋𝜃old (𝑢

𝑎
𝑡 |𝑧𝑎𝑡 )

, 𝜌𝜃 = clip(𝜌𝜃 , 1−𝜖, 1+𝜖), 𝜋𝜃old represents

the policy generating the transitions.
Furthermore, when inter-agent communication is allowed, we in-

troduceAT-FAPPO,which integrates a self-attentionmechanism [14].
This mechanism enables agents to share information during learn-
ing, further improving fairness and coordination.

4 EXPERIMENTAL RESULTS
To validate the efficacy of our proposed methods, we performed
experiments in two different environments. Our first environment
is a Random MDP, a grid-world-based multi-agent environment
where three agents navigate a 5× 2 grid with a fully random transi-
tion function. Our second environment is Matthew effect [5] which
contains 10 pac-man agents and 3 ghosts, where an agent’s size
and speed increase with the number of ghosts it consumes, leading
to inherent imbalance.

For a comprehensive performance evaluation of our proposed
methods, we compare our methods against state-of-the-art MARL
baselines. Figure 1a shows the experimental results of MARL base-
lines and our proposed methods in a Random MDP environment.
Interestingly both fair MARL baselines, FEN and SOTO, perform
worse, which is likely because of the fact they are designed for
environments where neighbors’ information is necessary to learn
fair optimal solutions. On the other hand, independent learning al-
gorithms, including IPPO and our proposed methods, perform well
with less hyperparameter tuning. Notably, FAPPO and AT-FAPPO
outperform all baselines in terms of total rewards and Coefficient of
variation (CV). A lower CV indicates reduced variability in agent
rewards, as confirmed by the minimum reward metric, where only
our proposed methods manage to significantly increase the mini-
mum agent reward, thereby establishing a more balanced reward
distribution among all agents.

Figure 1b depicts the experimental results for the Matthew effect
environment. Once again, independent learning algorithms per-
form better than other baselines. FAPPO and AT-FAPPO maximize
total income, showing they can achieve an efficient solution while
simultaneously minimizing CV andmaximizing theminimum agent
income, thus resulting in a fair solution.
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