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ABSTRACT
The Collaborative Edge Data Caching (CEDC) problem poses a sig-
nificant challenge in Mobile Edge Computing (MEC). It’s a research
focus to address the problem from the service providers’ perspec-
tive that requires the optimal caching strategy for service providers
to maximize their caching revenue, subject to capacity and latency
constraints. However, current research primarily focuses on cen-
tralized methods, neglecting the distributed and dynamic nature of
CEDC. Accordingly, we first propose to use a Dynamic Distributed
Constraint Optimization Problem (D-DCOP) to model the prob-
lem in a distributed manner, where capacity, latency constraints
and caching revenue are dynamically mapped into local hard con-
straints and constraint utilities between edge servers according to
changes in user requests. The proposed model enables each edge
server to make its caching strategy through information exchange
with neighboring edge servers. We further present a local search
framework for CEDC to handle local hard constraints in the model
and apply it to two classic local search algorithms, DSA and MGM,
along with specific modifications to avoid repetitive computation.
We empirically confirm the superiority of our distributed model
and algorithms over state-of-the-art centralized solvers for CEDC.
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1 INTRODUCTION
The collaborative edge data caching (CEDC) problem is a significant
challenge in MEC [1, 2], focusing on how to efficiently store and
access frequently used data in edge environments [3]. Most existing
studies for the CEDC problem concentrate on optimizing overall
caching performance [4], e.g. minimizing user data retrieval la-
tency [5], maximizing cache hit rate [6], minimizing system energy
consumption [7, 8]. However, these studies consider the problem
from the perspective of mobile network operators, overlooking the
needs and concerns of service providers [9]. Unlike mobile network
operators, service providers consider not only the reduction of user
data retrieval latency but also the optimization of caching costs on
edge servers. Xia et al. [9] were one of the earliest tomodel this prob-
lem as a constrained optimization problem, proposing a Lyapunov
optimization based algorithm aimed at minimizing caching cost.
Subsequently, Liu et al. [10] formulated the problem as an integer
programming problem by introducing caching benefit and proposed
an exact algorithm (IPEDC) for it. Since the CEDC problem has been
proven to be NP-hard, Xia et al. [11] developed an approximation
algorithm (AEDC) to maximize caching revenue. Chen et al. [12]
formulated the problem as a constrained optimization problem to
reduce retrieval latency within the service provider’s budget. Xia et
al. [13] were the first to consider the dynamic nature of the problem,
proposing a system model aimed at maximizing caching revenue
and introducing the OL-MEDC algorithm.

However, the MEC system is a typical distributed scenario [14],
where computing and storage resources are deployed on edge
servers. The above studies are all based on a centralized model.
As the scale of the problem increases, these centralized approaches
place huge pressure on network bandwidth, leading to delays in
caching strategy transmission and insufficient scalability. There-
fore, there is an urgent need for dynamic distributed solvers for the
CEDC problem to effectively adapt to this distributed environment.

In the paper, we formulate the CEDC problem as a D-DCOP [15]
to accommodate its distributed and dynamic nature and accordingly
present the distributed algorithms for it. To the best of our knowl-
edge, this work is the first attempt to solve the CEDC problem from
the service providers’ perspective in a distributed manner.
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2 A CEDC MODEL BASED ON D-DCOP
We adopt a D-DCOP to reconstruct the CEDC model as described
in [13]. Specifically, we formulate the CEDC problem over a pe-
riod of time 𝑇 as a sequence of DCOPs: D1, . . . ,D𝑇 . Each D𝑡

= ⟨𝑆𝑡 , 𝜆𝑡 , 𝐷𝑡 , 𝐹 𝑡 ⟩ is defined as follows.
• 𝑆𝑡 = {𝑆1, . . . , 𝑆𝑛} is a set of agent. Each agent 𝑆𝑖 represents an

edge server in the CEDC problem.
• 𝜆𝑡 = {𝜆𝑡1, . . . , 𝜆

𝑡
𝑛} is a set of variables, where 𝜆𝑡𝑖 is controlled

solely by agent 𝑆𝑖 and represents the caching strategy of 𝑆𝑖 in time
slot 𝑡 . Each 𝜆𝑡

𝑖
= {𝜆𝑡

𝑖,1, . . . , 𝜆
𝑡
𝑖,𝑧
}, where 𝜆𝑡

𝑖,𝑘
indicates whether agent

𝑆𝑖 chooses to cache 𝑑𝑎𝑡𝑎𝑘 in time slot 𝑡 , and |𝜆𝑡
𝑖
| = |𝐷𝑎𝑡𝑎 |.

• 𝐷𝑡 = {𝐷𝑡
1, . . . , 𝐷

𝑡
𝑛} is a set of variable domains. Each 𝐷𝑡

𝑖
∈ 𝐷𝑡

consists of a set of finite allowable values for variable 𝜆𝑡
𝑖
∈ 𝜆𝑡 . For

each 𝜆𝑡
𝑖,𝑘

∈ 𝜆𝑡
𝑖
, its domain is {0, 1}, where 0 indicates that agent 𝑆𝑖

does not cache 𝑑𝑎𝑡𝑎𝑘 in time slot 𝑡 , and 1 indicates that it does.
• 𝐹 𝑡 is a set of constraint utility functions, where 𝑓 𝑡

𝑖 𝑗
∈ 𝐹 𝑡 :

𝐷𝑖 × 𝐷 𝑗 → R⩾0 specifies the nonnegative utility for each value
combination of 𝜆𝑡

𝑖
and 𝜆𝑡

𝑗
subject to Φ𝑖, 𝑗 ≤ Φmax. Here, Φ𝑖, 𝑗 and

Φmax denote hop count between edge servers 𝑆𝑖 and 𝑆 𝑗 , and latency
limit [16]. Two local hard constraints and 𝑓 𝑡

𝑖 𝑗
are defined as follows.

(a) The 𝑙𝑜𝑐𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 and 𝑙𝑜𝑐𝑎𝑙 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

are defined by Eq. (1) and Eq. (2), respectively. Here, |𝑑𝑎𝑡𝑎𝑘 | denotes
the size of 𝑑𝑎𝑡𝑎𝑘 , 𝑐𝑎𝑐ℎ𝑒𝑚𝑎𝑥 represents the cache limit [17], N(S𝑖 )
is the set of agents with hops not exceeding Φmax from 𝑆𝑖 , and 𝜏𝑡𝑞,𝑘
indicates whether user 𝑢𝑞 requests 𝑑𝑎𝑡𝑎𝑘 in time slot 𝑡 .∑︁

𝑑𝑎𝑡𝑎𝑘 ∈𝐷𝑎𝑡𝑎

𝜆𝑡
𝑖,𝑘

· |𝑑𝑎𝑡𝑎𝑘 | ≤ 𝑐𝑎𝑐ℎ𝑒max,∀𝑡 ∈ 𝑇 (1)

∑︁
𝑆𝑙 ∈𝑁 (𝑆𝑖 )∪{𝑆𝑖 }

𝜆𝑡
𝑙,𝑘

≠ 0, 𝑠 .𝑡 . : ∃𝑢𝑞 ∈ 𝑈𝑖 , 𝜏
𝑡
𝑞,𝑘

= 1 (2)

(b) The 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑓 𝑡
𝑖 𝑗
, defined by Eq. (3), incorporates two

soft constraints: the 𝑐𝑎𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑔𝑎𝑖𝑛 𝐵𝑅𝑡
𝑖 𝑗
, which quantifies the

difference between the cost of transmitting 𝑑𝑎𝑡𝑎𝑘 from the cloud to
𝑆𝑖 and 𝑆 𝑗 and the actual cost of storing 𝑑𝑎𝑡𝑎𝑘 in these servers, and
the 𝑑𝑎𝑡𝑎 𝑐𝑎𝑐ℎ𝑖𝑛𝑔 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 𝐵𝐷𝑡

𝑖 𝑗
, which represents the total caching

benefit derived from data retrieval by users 𝑢𝑞 ∈ 𝑈 𝑡
𝑖
∪𝑈 𝑡

𝑗
. Here,

𝛾 denotes the service provider’s priority for lowering user data
retrieval latency. Accordingly, we formulate the CEDC problem
over a period of time 𝑇 as Eq. (4).

𝑓 𝑡𝑖 𝑗

(
𝜆𝑡𝑖 , 𝜆

𝑡
𝑗

)
= 𝛾 · 𝐵𝐷𝑡

𝑖 𝑗

(
𝜆𝑡𝑖 , 𝜆

𝑡
𝑗

)
+ 𝐵𝑅𝑡𝑖 𝑗

(
𝜆𝑡𝑖 , 𝜆

𝑡
𝑗

)
(3)

max lim
𝑇→∞

𝑇∑︁
𝑡=1

∑︁
𝑓 𝑡
𝑖 𝑗
∈𝐹 𝑡

𝑓 𝑡𝑖 𝑗 (𝜆
𝑡
𝑖 , 𝜆

𝑡
𝑗 ), 𝑠 .𝑡 . : 𝐸𝑞. (1), 𝐸𝑞. (2) (4)

3 LOCAL SEARCH FRAMEWORK FOR CEDC
We propose a local search framework to address the dynamics
and local hard constraints in the model. To tackle changes in user
data requests over time, each agent 𝑆𝑖 updates its 𝑙𝑜𝑐𝑎𝑙𝑈𝑠𝑒𝑟𝑅𝑒-
𝑞𝑢𝑖𝑟𝑒𝐷𝑎𝑡𝑎𝑉𝑖𝑒𝑤 (a set of data requests from users covered by all 𝑆𝑙 ∈
{𝑆𝑖 ∪𝑁 (𝑆𝑖 )} in time slot 𝑡 ) by exchanging userRequireDataMessage
with 𝑆 𝑗 ∈ 𝑁 (𝑆𝑖 ) and initializes 𝜆𝑡

𝑖
to 𝜆𝑡−1

𝑖
at the beginning of

time slot 𝑡 . To tackle hard constraints, each agent 𝑆𝑖 exchanges
initMessage and suggestMessage to update localDataView (a set of

(a) The number of edge servers (b) Edge density

Figure 1: Caching Revenue Under Different Settings

caching strategies for all 𝑆𝑙 in time slot 𝑡 ), localDataDelayView (a set
of latencies for all 𝑆𝑙 to retrieve data in time slot 𝑡 ) and acceptInitMap
(a set of variables indicating whether all 𝑆 𝑗 ∈ 𝑁 (𝑆𝑖 ) satisfy local
hard constraints). When all variables in acceptInitMap are set to 1,
it indicates that all 𝑆𝑙 have satisfied the local capacity constraint
and local latency constraint, marking the completion of the hard
constraint satisfaction phase. Through this framework, each agent
𝑆𝑖 provides a feasible assignment and latency information regarding
𝑁 (𝑆𝑖 ) for local search algorithm for CEDC in each time slot.

4 DSA-CEDC AND MGM-CEDC
Based on the framework presented in Section 3, we introduce spe-
cific modifications to DSA [18] and MGM [19], and propose two
distributed algorithms for CEDC, named DSA-CEDC and MGM-
CEDC, respectively. The specific modifications encompass: (1) we
modify the computation for the sum of 𝑓 𝑡

𝑖 𝑗
to avoid double-counting

of 𝐵𝑅𝑡
𝑖 𝑗
(𝜆𝑡

𝑖
, 𝜆𝑡

𝑗
); (2) We further refine the feasible 𝐷𝑡

𝑖
by rechecking

the local capacity constraint and local latency constraint. (3) We
update 𝑙𝑜𝑐𝑎𝑙𝐷𝑎𝑡𝑎𝐷𝑒𝑙𝑎𝑦𝑉𝑖𝑒𝑤 by exchanging updateDataDelayMes-
sage among agents, ensuring accurate and up-to-date latency infor-
mation. These specific modifications can be easily applied to any
local search algorithm.

5 EXPERIMENTAL EVALUATION
We evaluate DSA-CEDC and MGM-CEDC using a real-world EUA
dataset [20]. Due to space constraints, we present only the results
with a brief summary. Detailed information on the experimental
setup and configuration is available in [10, 11, 13].

In Fig. 1(a), as the number of edge servers increases, the ex-
panded cache space enhances the chances of data transmissions
but also raises caching costs, ultimately reducing caching revenue.
In scenarios with more servers, OL-MEDC, AEDC, and RCC fail to
generate positive caching revenue, whereas DSA-CEDC and MGM-
CEDC achieve 75.2% and 72.9% of IPEDC’s revenue, respectively. In
Fig. 1(b), as the network density reaches 3.0, MGM-CEDC’s aver-
age caching revenue drops by 13.5% due to its additional round of
message passing compared to DSA-CEDC. Higher network density
increases communication load and coordination complexity, caus-
ing greater performance fluctuations in MGM-CEDC. In contrast,
DSA-CEDC’s lower communication overhead ensures stable per-
formance across all network densities. These experiments indicate
that DSA-CEDC and MGM-CEDC closely approximate the exact
algorithm IPEDC, demonstrating their effectiveness in generating
caching strategies even in more complex and large-scale scenarios.
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