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ABSTRACT
Aggregate games, first conceptualized by Nobel laureate Reinhard
Selten in 1970, model the decision-making of interdependent agents
where each agent’s utility depends on their own action and the
aggregation of everyone’s actions. We consider computational ques-
tions on pure Nash equilibrium (PNE) and pure strong Nash equilib-
rium (SNE) for aggregate games. On the way, we define a new sub-
class of aggregate games we call additive aggregate games, which
encompasses popular games like congestion games, anonymous
games, Schelling games, etc. We show that PNE existence is NP-
complete for very simple cases of additive aggregate games. We
devise an efficient aggregate-space algorithm for determining the
existence of a PNE and computing one (if exists) for bounded ag-
gregate space. For SNE, we show that SNE recognition is co-NP-
complete and SNE existence is Σ𝑃2 -complete, even for simple types
of additive aggregate games. For large classes of aggregate games,
we provide several novel and efficient aggregate-space algorithms
for recognizing an SNE and deciding the existence of an SNE. Fi-
nally, we connect our results to several well-studied subclasses of
aggregate games and show how our computational schemes can
shed new light into these games.
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1 AGGREGATE GAMES
We start by defining aggregate games. Let 𝑁 = {1, · · · , 𝑛} be a set
of 𝑛 agents in a game. Each agent 𝑖 ∈ 𝑁 has a set 𝐴𝑖 of actions and
selects an action 𝑎𝑖 ∈ 𝐴𝑖 . Let𝑚 = max𝑖∈𝑁 |𝐴𝑖 | be the maximum
number of actions of any agent. Let 𝑨 = 𝐴1 × 𝐴2 × ... × 𝐴𝑛 be
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the set of action profiles of all agents where an action profile 𝒂 =

(𝑎1, 𝑎2, · · · , 𝑎𝑛) ∈ 𝑨 consists of an action for each agent. Given an
action profile 𝒂 = (𝑎𝑖 , 𝒂−𝑖 ) ∈ 𝑨, we use 𝒂−𝑖 to refer to the actions
of all agents except agent 𝑖 . Given a subset of agents 𝐼 ⊆ 𝑁 , we use
𝒂𝐼 to refer to the actions of each agent in 𝐼 and 𝒂−𝐼 to refer to the
actions of agents not in 𝐼 .

In an aggregate game, an agent’s utility function depends on the
agent’s action and the aggregation of everyone’s actions, includ-
ing the actions different from the agent’s own action [1, 3, 4, 10–
13]. To capture this aggregation, we define an aggregator function
𝜙 : 𝑨 → 𝑌 that maps each action profile to an aggregate measure
in the space 𝑌 ⊂ Z𝑑≥0. We denote agent 𝑖’s utility function as
𝜋𝑖 : 𝐴𝑖 × 𝑌 → R, which maps 𝑖’s action and an aggregate to a real
number. We assume that the utility and aggregator functions can
be evaluated efficiently.

Definition 1 (Aggregate Game). The tuple (𝑁, {𝐴𝑖 , 𝜋𝑖 }𝑖∈𝑁 , 𝜙) de-
fines an aggregate game. It consists of a set 𝑁 of agents, a set 𝐴𝑖 of
actions for each agent 𝑖 , and a utility function 𝜋𝑖 (𝑎𝑖 , 𝜙 (𝒂)) for each
agent 𝑖 ∈ 𝑁 and 𝒂 ∈ 𝑨, where 𝜋𝑖 is a function of 𝑖’s actions in 𝐴𝑖 and
the aggregator function 𝜙 ’s outputs in 𝑌 .

We next define an additive aggregate game.

Definition 2 (Additive Aggregate Game). An additive aggregate
game (𝑁, {𝐴𝑖 , 𝜋𝑖 }𝑖∈𝑁 , 𝜙) is an aggregate game where for any 𝒂 =

(𝑎1, · · · , 𝑎𝑛) ∈ 𝑨, the aggregator function is additively separable:
𝜙 (𝒂) = 𝜙1 (𝑎1) + · · · +𝜙𝑛 (𝑎𝑛) for some function 𝜙𝑖 : 𝐴𝑖 → 𝑌 for each
𝑖 ∈ 𝑁 .

Given an instance of an additive aggregate game, we are in-
terested in pure Nash equilibrium (PNE) and pure strong Nash
equilibrium (SNE) concepts [7], where agents act deterministically.

2 PNE COMPUTATION
We first establish the hardness of PNE existence in very simple
instances of additive aggregate games.

Theorem 1. It is NP-complete to decide PNE existence in additive
2-action aggregate games, even when the dimension of the aggregate
space is constant and the utility function of each agent returns two
integer values.

We next utilize the structure and parameters of additive ag-
gregate games to design efficient general-purpose algorithms for
determining the existence of a PNE. Our algorithmic approach sys-
tematically explores the aggregate space and determines whether
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an aggregate is consistent with a PNE (i.e., for a given 𝑦 ∈ 𝑌 , is
there a PNE 𝒂∗ such that 𝜙 (𝒂∗) = 𝑦?) by solving three subproblems
stated below. The fundamental algorithmic approach was derived
from a CSP formulation in the context of congestion games in [9].
Here, we extend it to general additive aggregate games and also
consider SNE, which did not get any attention in [9].

Problem 1 (Deviation). Given an additive aggregate game instance
and 𝑦 ∈ 𝑌 , for each agent 𝑖 ∈ 𝑁 and any 𝑎𝑖 , 𝑎

′
𝑖
∈ 𝐴𝑖 , compute

deviate(𝑎𝑖 , 𝑦, 𝑎′𝑖 ) = 𝑦 which returns an aggregate 𝑦 = (𝑦−𝜙𝑖 (𝑎𝑖 )) +
𝜙𝑖 (𝑎′𝑖 ) (∈ 𝑌 or ∉ 𝑌 ) when agent 𝑖 deviates from 𝑎𝑖 to 𝑎′𝑖 under 𝑦.

Problem 2 (Aggregate Best Response). Given an additive aggregate
game instance and 𝑦 ∈ 𝑌 , for each agent 𝑖 ∈ 𝑁 , find the set of
best-response actions given aggregate 𝑦. That is,

𝐵𝑅𝑖 (𝑦) = {𝑎𝑖 ∈ 𝐴𝑖 | 𝜋𝑖 (𝑎𝑖 , 𝑦) ≥ 𝜋𝑖 (𝑎′𝑖 , 𝑦) for each
𝑎′𝑖 ∈ 𝐴𝑖 such that deviate(𝑎𝑖 , 𝑦, 𝑎′𝑖 ) = 𝑦 ∈ 𝑌 }.

Problem 3 (Construction). Given an additive aggregate game in-
stance and a subset �̃�𝑖 ⊆ 𝐴𝑖 of actions for each agent 𝑖 ∈ 𝑁 , determine
if there exists �̃� = (𝑎1, ..., 𝑎𝑛) ∈

∏
𝑖∈𝑁 �̃�𝑖 such that 𝜙 (�̃�) = 𝑦.

We show that Problem 3 is strongly NP-complete. Despite this,
we present an efficient graph-based dynamic programming algo-
rithm that is polynomial in the size of the aggregate space 𝑌 .

Theorem 2. There is an 𝑂 ( |𝑌 | (𝑛𝑚2 + |𝑌 |𝑛𝑚)) algorithm for deter-
mining the existence of a PNE and returning a PNE (if it exists) for
additive aggregate games.

3 SNE COMPUTATION
We investigate two problems on pure strong Nash equilibrium
(SNE): recognizing whether an action profile is an SNE and com-
puting an SNE (if it exists).

3.1 Recognizing an SNE
We show that recognizing whether a given action profile is an SNE
is co-NP-complete for special types of additive aggregate games. To
put this result in context, this problem is polynomial-time solvable
for anonymous games, a subclass of additive aggregate games [8].

Theorem 3. It is co-NP-complete to recognize whether a given action
profile is an SNE for an additive aggregate game with a constant
number of actions for each player.

We present another aggregate-space algorithm to determine
whether a given action profile is an SNE. The algorithm is efficient
when the size of the aggregate space is bounded.

Theorem 4. There is an 𝑂 ( |𝑌 |2𝑛2𝑚) algorithm for determining
whether a given action profile is an SNE in additive aggregate games.

3.2 Computing an SNE
Given that the SNE recognition problem is already hard, determin-
ing the existence of an SNE is likely to be hard. As we show below,
the SNE existence problem is indeed Σ𝑃2 -complete.

Theorem 5. It is Σ𝑃2 -complete to determine the existence of an SNE
in additive aggregate games, even when the agents have a constant
number of actions.

Given the above Σ𝑃2 -completeness, we consider additional prop-
erties and develop efficient algorithms for bounded aggregate space.

Symmetric Additive Aggregate Games. Given an additive aggregate
game (𝑁, {𝐴𝑖 , 𝜋𝑖 }𝑖∈𝑁 , 𝜙), it is symmetric if and only if for each
agent 𝑖 ∈ 𝑁 , 𝐴𝑖 = 𝐴, and 𝜋𝑖 = 𝜋 , and 𝜙𝑖 = 𝜙0. Let the number of
dimensions of 𝑌 ⊆ Z𝑑

>0 be 𝑑 . We define the support (𝜙0 (𝑎)) = {𝑘 ∈
{1, ..., 𝑑} | 𝜙0 (𝑎)𝑘 > 0} to be the set of dimensions that action 𝑎 ∈ 𝐴

contributes to. For𝑑 ≥ |𝐴| and 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝜙0 (𝑎))∩𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝜙0 (𝑎′)) =
∅ for all distinct 𝑎, 𝑎′ ∈ 𝐴, we present an𝑂 ( |𝑌 |3𝑛2𝑚) algorithm for
SNE computation (if it exists).

Non-Increasing Additive Aggregate Games. Next, we consider addi-
tive aggregate games with non-increasing utility functions, where
an agent’s utility is only affected by the elements of aggregate that
they affect. Given an additive aggregate game (𝑁, {𝐴𝑖 , 𝜋𝑖 }𝑖∈𝑁 , 𝜙),
let the dimension of 𝑌 ⊆ Z𝑑

>0 be 𝑑 = |𝐴| and 𝐴 = 𝐴𝑖 = {1, 2, ..., 𝑑}
for all 𝑖 ∈ 𝑁 . This game is non-increasing if and only if for any 𝑖
and any 𝑎𝑖 , 𝜋𝑖 (𝑎𝑖 , 𝑦′) ≤ 𝜋𝑖 (𝑎𝑖 , 𝑦) whenever𝑦 ≤ 𝑦′ ∈ 𝑌 (i.e.,𝑦 𝑗 ≤ 𝑦′

𝑗

for 𝑗 = 1, ..., 𝑑). We give an𝑂 ( |𝑌 | (𝑛𝑚2+ |𝑌 |𝑛𝑚+ |𝑌 |𝑛)) constructive
algorithm for SNE existence when 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝜙𝑖 (𝑎𝑖 )) = {𝑎𝑖 } for all 𝑎𝑖
and 𝑖 , and 𝜋𝑖 (𝑎𝑖 , 𝑦) = 𝜋𝑖 (𝑎𝑖 , 𝑦′) for any 𝑦,𝑦′ ∈ 𝑌 in which 𝑦𝑎𝑖 = 𝑦′𝑎𝑖 .

4 CONNECTION TO OTHER GAMES
We establish connections between additive aggregate games and
various popular classes of games, namely, congestion games, anony-
mous games, Schelling games, and Cournot games. First, we show
congestion games [14, 15] to be a type of additive aggregate games
and present the following results for 𝑛 agents and𝑚 actions.
Theorem 6. There is an𝑂 (𝑛 |𝑅 | (𝑛𝑚2 +𝑛 |𝑅 |𝑛𝑚)) algorithm for com-
puting a PNE for congestion games. The algorithm runs in polynomial
time for bounded number of resources.

Theorem 7. There is an 𝑂 (𝑛2 |𝑅 |𝑛2𝑚) algorithm for recognizing
whether a given action profile is an SNE in congestion games. The
algorithm runs in polynomial time for bounded number of resources.

We show that anonymous games [5, 8] are a subclass of additive
aggregate games and further explore this connection. In particular,
we have shown SNE recognition and computation problems are
co-NP-complete and Σ𝑃2 -complete for additive aggregate games,
respectively. In contrast, these problems are in P and NP-complete,
respectively, for anonymous games [8].

We further connect Schelling games [2, 6] to additive aggregate
games as a subclass. For 𝑛 agents, 𝑘 ≥ 2 agent types, and𝑚 location
choices, we have the following results. Notably, the algorithms run
in polynomial time for bounded number of locations and types.
Theorem 8. There is an 𝑂 (𝑛𝑚𝑘 (𝑛𝑚2 + 𝑛𝑚𝑘+1𝑚)) constructive al-
gorithm for PNE existence in Schelling games.

Theorem 9. There is an 𝑂 (𝑛2𝑚𝑘+2𝑚) algorithm for recognizing
whether a given action profile is an SNE in Schelling games.

Above is the first SNE result on SGs to our knowledge. This
highlights the broad applicability of our technical results.
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