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ABSTRACT
We use multi-agent simulation to design and test an auction-based
coordination mechanism for the allocation of charging capacity
among competing electric vehicle fleets.
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1 INTRODUCTION
The future of urban mobility will likely be centered around shared
autonomous electric vehicle (SAEV) fleets providing on-demand
mobility services to their users [17]. This is deemed to offer a bal-
ance of sustainability, efficient urban space utilization, and operator
profitability while maintaining user convenience [12, 16]. A core
task of operators is maintaining state of charge (SoC) levels suf-
ficient for user service [13]. While previous research tackles the
charging management of SAEV fleets [3, 6, 10], common limiting as-
sumptions are a monopolistic fleet operator and unlimited charging
infrastructure at its fingertips.

We thus consider an SAEV market under competition and argue
that a shared charging infrastructure will lead to more efficient out-
comes as fewer chargers are needed to satisfy charging demands [2].
In addition, an efficient coordination mechanism helps to manage
these shared resources effectively and minimize prolonged waiting
times. Few prior works have specifically considered the business
case of a charging station operator (CSO) serving the charging
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needs of commercial fleets. Lu et al. [14] explore the pricing prob-
lem of multiple CSOs that compete for a monopolistic SAEV oper-
ator’s business, and Zhao et al. [19] analyze the joint planning of
a profit-oriented CSO and an electric fleet for charging and fleet
configuration. We advance this emerging field by proposing a mech-
anism for a third-party CSO to coordinate the charging demand of
multiple commercial fleets. Unlike existing studies that focus on the
non-cooperative dynamics between one or more CSOs and a single
customer, we address challenges stemming from uncoordinated
charging of multiple fleets on a shared infrastructure.

Coordination problems are widely studied, and efficient out-
comes have been repeatedly shown to be achieved using auction
mechanisms [8, 11]. We propose a real-time auction system for
allocating charging capacity facilitated by autonomous smart bid-
ding agents [1] for efficient real-time allocation of scarce resources.
Specifically, we suggest breaking down the charging capacity allo-
cation into a spot market for reserving spatio-temporal charging
capacity. To evaluate our proposed model, we use a multi-agent
simulation, which is crucial to capture the endogenously emerg-
ing interactions between SAEV fleets and the CSO, reacting to
stochastic mobility demand [5, 9, 13].

Our core contributions include developing a multi-agent sim-
ulation that replicates interdependent urban mobility processes,
serving as a test bed for business and policy interventions [18].
We are the first to address the challenge of coordinating multi-
ple competing fleets on the same capacitated charging infrastruc-
ture. Additionally, we propose an auction mechanism for allocating
spatio-temporally dependent capacity reservations, demonstrating
that it outperforms uncoordinated charging and competes effec-
tively with private infrastructure scenarios.

2 METHOD
2.1 Mechanism and Environment Model
Competing SAEV operators serve the stochastic mobility demand
of their customers. We assume opportunistic users whose utility
function considers the competing services as perfect substitutes
and inclines them to reject rides altogether if they don’t fit their
preferences. Trips are executed by vehicles belonging to the respec-
tive operator’s fleet, thereby inducing charging demand. To this
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end, they observe their vehicles’ SoC and dispatch them to charging
tasks if their SoC drops below the heuristic recharging threshold.
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Figure 1: SAEV Charging Coordination Framework

All operators 𝑓 share a single charging network, consisting of
charging hubs 𝑖 with multiple chargers per hub, placed at differ-
ent locations in the city. Without coordination, the availability of
chargers, and thus queue time, is uncertain for operators at the
time of dispatch, as they observe current availability, but not the
dispatch decisions of their competitors. While co-optimization of
the charging schedules of all competitors would be theoretically
feasible, this would require complete information sharing, revealing
critical business information [15].

To address the inefficiency of uncertain availabilities, we pro-
pose a spot market auction for charging station reservations. For
each charging location/hub at time 𝑡 , the CSO posts the available
chargers in a uniform sealed bid auction at 𝑡 − 𝜏 . Fleet operators
submit their bid vectors for each location at that time 𝐵𝑓 ,𝑖,𝑡 , based
on their charging demand 𝐷 𝑓 ,𝑖,𝑡 resulting from trip serving. Since
we assume autonomous bidding agents, the auction is settled instan-
taneously and the CSO announces the individual allocations 𝑅𝑓 ,𝑡 of
all charging hubs to the respective fleets, where the clearing price
at each 𝑖 is equal to the highest rejected bid. Fleet operators then
plan charging tasks in accordance with their allocated reservations.
Figure 1 provides an overview of the mechanism environment.

We evaluate the mechanism through a multi-agent simulation
[4], which models the stochasticity and variable specifications of
the fleets and the auctioneer.

2.2 Case Study
We configure the multi-agent simulation using real-world data from
the city of Chicago [7]. We initialize the simulation with two SAEV
fleets. Each of those fleets operates a total of 500 homogeneous
vehicles with a usable battery capacity of 50 kWh. Their technical

characteristics such as energy consumption and charging power
follow industry standards. The charging infrastructure is strategi-
cally placed in high charging demand areas. We consider a charging
infrastructure of ten 22 kW chargers at each of the nine charging
locations, amounting to an installed capacity of roughly 2 MW,
which can be considered scarce.

We analyze four scenarios: Two in which both fleets operate on
the same shared charging infrastructure, and two sub-cases. Firstly,
we examine the emergent behavior of fleet operators when they
have to reserve charging capacity by auction, as described in Sec-
tion 2.1. Secondly, we study a situation, in which the competing
fleets dispatch vehicles to chargers without coordination or knowl-
edge about the current decisions of the other fleet. We moreover
analyze whether the shared infrastructure system can compete
with operators who own their private infrastructure and dispatch
their vehicles to it at will, without encountering congestion caused
by other fleets. Since in this case operators can fully control the
flow of vehicles to CS, we consider an optimization-based approach
for their dispatch. To create a theoretical upper bound of which
service rate could be achieved at most, we also benchmark our
results against a scenario in which fleets have access to unlimited
charging infrastructure.

3 RESULTS
We find that the proposed mechanism (32.05%) outperforms the
uncoordinated benchmark (21.77%) in terms of service rate, while
staying competitive with the fleets using private infrastructure
and downtime-minimizing charging allocation (32.23%). Figure 2
shows the average hourly service levels throughout the experiment
horizon. It becomes evident that the small performance difference
between the coordination case and the private infrastructure bench-
mark is driven by a brief time window on the weekend. Note that
fleet sizes and user utility inhibit service levels as high as 100 %, as
is exemplified by the unlimited charging case.
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Figure 2: Mean Hourly Service Levels

Our experiments demonstrate that the employed coordination
approach can improve operational outcomes under a constrained
charging infrastructure without explicit multilateral coordination
between competitors. In doing so, we demonstrate the potential
of simulation for tackling intricate real-world problems with ap-
proaches that can’t be evaluated only theoretically or analytically.
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