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ABSTRACT

We study the combinatorial multi-armed bandit (MAB) problem
with an additional constraint that an arbitrary subset of arms is
unavailable at any given time instant. We refer to this setting
as a volatile combinatorial MAB setting. The bandit algorithm
must pull a subset of arms from the set of available arms to mini-
mize the regret. Under some mild smoothness conditions, we show
that the proposed CV-UCB algorithm—a straightforward extension
of well-known C-UCB algorithm—achieves a 𝑂 (log(𝑇 )) instance-
dependent regret guarantee under a semi-bandit feedback setting.
We further show that under some mild restrictions on the range of
reward functions, CV-UCB incurs 𝑂 (

√︁
𝑇 log(𝑇 )) regret, which we

call weak instance-independent regret. We further show that the
instance-independent regret of 𝑂 ( 3

√︁
𝑇 2 log(𝑇 )) for CV-UCB algo-

rithm, completing the hierarchy of regret guarantees obtained by
gradually relaxing the dependence on the instance parameters.
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1 INTRODUCTION

We study a combination of two well studied extensions of classical
stochastic MABs; sleeping/ volatile bandits [2, 4, 11] and combinato-

rial bandits [7–9]. In the volatile bandits setting, a subset of arms is
unavailable at any given time instant. This variant, sometimes also
known as mortal bandits [3], models many real-world scenarios
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such as crowdsourcing [13], online advertising [3, 10], and network
routing [2, 11], where, an algorithm is restricted to select from only
the available set of choices.

Studying these two variants together poses interesting technical
questions. First, as the regret notion is modified to accommodate the
volatile nature of the arms, it is unclear priori that the algorithms
that achieve optimal regret guarantee for the non-volatile case will
produce optimal regret guarantees for the volatile case. Second, in
contrast to the non-volatile bandit’s case, the optimal super-arm
may change at each time instant. Hence, it is unclear whether the
regret guarantees for learning in the non-volatile case translate
to the volatile case in the general reward case, i.e., whether it will
prohibitively elongate the learning process. In this paper, we address
both of the above questions. A longer version of the paper with
detailed proofs and simulation analysis is available online [1].

1.1 Model and Assumptions

We consider a volatile combinatorial bandits problem with [𝑘] :=
{1, 2, · · · , 𝑘} denoting the set of base arms and 𝝁 ∈ [0, 1]𝑘 , the
vector of unknown mean qualities of the base arms. Similar to the
classical stochastic MAB problem, each base arm 𝑖 corresponds to
an unknown distributionD𝑖 ∈ Δ( [0, 1]) with mean 𝜇𝑖 ∈ [0, 1] over
its quality. At each time instant 𝑡 , base arms belonging to a subset
𝐴𝑡 ⊆ [𝑘] become available. We consider that 𝐴𝑡 is an arbitrary
non-empty subset. An algorithm can pull any non-empty subset
𝑆𝑡 ⊆ 𝐴𝑡 of arms and receive a reward 𝑅(𝑆𝑡 , 𝝁). The reward depends
on the selected subset 𝑆𝑡 and the mean qualities of the arms, 𝝁. We
write 𝑅𝑆 := 𝑅(𝑆, 𝝁). Furthermore, note that the reward depends
only on the qualities of the arms pulled by the algorithm, i.e, 𝑆𝑡 . We
remark here that the classical stochastic bandits setting is a special
case of our setting with 𝐴𝑡 = [𝑘], |𝑆𝑡 | = 1 and 𝑅𝑡 = 𝑋𝑆𝑡 ,𝑡 for all 𝑡 .

For a given reward function 𝑅(.), the problem reduces to one of
finding a reward-maximizing subset of arms. This problem, even
when the qualities of the base arms are known, is known to be NP-
hard [14]. However, many important settings, such as sub-modular
reward functions, admit polynomial time approximation schemes
that provide an attractive approximation guarantee. We assume ex-
istence of a (𝛾, 𝛽)-approximation oracle denoted by (𝛾, 𝛽)-Oracle,
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which, given an availability set 𝐴 and a quality vector 𝝁, outputs
a set 𝑆 such that 𝑅(𝑆, 𝝁) ≥ 𝛾 · 𝑅(𝑆 ′, 𝝁), for all 𝑆 ′ ∈ 2𝐴 with the
probability of at least 𝛽 , with 𝛾, 𝛽 ∈ (0, 1]. This can be also writ-
ten as 𝑆 := Oracle(𝝁, 𝐴). This computation oracle separates the
learning task from the offline computation task and is extensively
used in the literature [5, 6, 9]. For the semi-bandit feedback to work
effectively, we assume below smoothness properties.

Property 1. Monotonicity: Let 𝝁, 𝝁′ ∈ [0, 1]𝑘 be two vectors such

that 𝝁′
𝑖
≥ 𝝁𝑖 for all 𝑖 ∈ [𝑘], then, for any 𝑆 ⊆ [𝑘], 𝑅(𝑆, 𝝁′) ≥ 𝑅(𝑆, 𝝁).

Property 2. Lipschitz Continuity: There exists a real valued con-
stant 𝐶 ≥ 1 such that for all 𝑆 ⊆ [𝑘], we have |𝑅(𝑆, 𝝁) − 𝑅(𝑆, 𝝁′) | ≤
𝐶 ·max𝑖∈𝑆 |𝝁𝑖 − 𝝁′

𝑖
|.

Property 3. Bounded Smoothness: There exists a strictly increas-

ing function 𝑓 such that for any 𝑆 ⊆ [𝑘], |𝑅(𝑆, 𝝁) −𝑅(𝑆, 𝝁′) | ≤ 𝑓 (Λ)
whenever max𝑖∈𝑆 |𝝁𝑖 − 𝝁′

𝑖
| ≤ Λ.

To evaluate the performance of an algorithm with limited avail-
ability of arms, we extend the notion of regret appropriately and
call it a volatile bandit regret given by

RAlg (𝑇 ) := max
(𝐴𝑡 )𝑇𝑡=1

EAlg
[ 𝑇∑︁
𝑡=1

(𝑅(𝑆★𝑡 , 𝝁) − 𝑅(𝑆𝑡 , 𝝁))
]
. (1)

Here, 𝑆★𝑡 ∈ argmax𝑆⊆𝐴𝑡
𝑅(𝑆, 𝝁). Note that when 𝐴𝑡 = [𝑘] for all

𝑡 , we recover the setting of [6]. Next, we define the regret in the
presence of (𝛾, 𝛽)-oracle. Let, 𝐵𝑡 be the event that an oracle returns
an 𝛾-approximate solution at time 𝑡 i.e. 𝐵𝑡 = {𝑅𝑆𝑡 ≥ 𝛾 · 𝑅𝑆★𝑡 }. Note
that P(𝐵𝑡 ) ≥ 𝛽 . The expected volatile bandit regret of Alg with
Oracle access is given by,

RAlg (𝑇 ) = max
(𝐴𝑡 )𝑇𝑡=1

EAlg
[ 𝑇∑︁
𝑡=1

(𝛾 · 𝛽 · 𝑅𝑆★𝑡 − 𝑅𝑆𝑡 )
]
. (2)

Notational Setup: For each base arm 𝑖 ∈ [𝑘], let 𝑁𝑖,𝑡 denote the
number of time instances arm 𝑖 is pulled till 𝑡 and let 𝜇𝑖,𝑡 be the
average reward obtained from these pulls. Further, let

𝜇𝑖,𝑡 := 𝜇𝑖,𝑡 +
√︁
3 log(𝑡)/2𝑁𝑖,𝑡 . (3)

We call 𝜇𝑖,𝑡 as the UCB estimate of arm 𝑖 at time 𝑡 and let Δ𝑆 :=
𝛾 · opt𝐴 − 𝑅𝑆 be the regret incurred by pulling super-arm 𝑆 . Here,
opt𝐴 := 𝑅𝑆★ = max𝑆⊆𝐴 𝑅𝑆 denotes the optimal reward when the
set of available arms is 𝐴. A super-arm 𝑆 ⊆ 𝐴 is bad (sub-optimal),
if Δ𝑆 > 0. For a given 𝐴 ⊆ [𝑘], we define the set of bad super-
arms as 𝑆𝐵 (𝐴) = {𝑆 ⊆ 𝐴|Δ𝑆 > 0}. Further, for a given 𝐴 ⊆ [𝑘],
define Δmin (𝐴) = 𝛾 · opt𝐴 − max𝑆∈𝑆𝐵 (𝐴) 𝑅𝑆 and Δmax (𝐴) = 𝛾 ·
opt𝐴 − min𝑆∈𝑆𝐵 (𝐴) 𝑅𝑆 . Note that, for any availability set 𝐴, we
have Δmax (𝐴) ≥ Δmin (𝐴) > 0. The strict inequality follows from
the definition of 𝑆𝐵 (𝐴). Next, define Δmax = max𝐴⊆[𝑘 ] Δmax (𝐴)
and Δmin = min𝐴⊆[𝑘 ] Δmin (𝐴).

2 CV-UCB ALGORITHM AND RESULTS

CV-UCB Algorithm: At each time 𝑡 , CV-UCB receives the set of
available arms 𝐴𝑡 . If there is a base arm in 𝐴𝑡 which is not pulled
previously, an algorithm pulls all the available arms. For each time
instance where all available arms are pulled atleast once, CV-UCB
obtains 𝑆𝑡 = Oracle(𝝁𝑡 , 𝐴𝑡 ). The algorithm then pulls a super-arm

𝑆𝑡 and obtains rewards 𝑅(𝑆𝑡 , 𝝁) and an individual base arm rewards
(semi-bandit feedback) 𝑋𝑖,𝑡 for each 𝑖 ∈ 𝑆𝑡 .

Theorem 2.1. The (instance-dependent) expected regret incurred
by CV-UCB when the reward function satisfies Lipschitz condition

(Properties 1 and 2) is given by

RCV-UCB (𝑇 ) ≤ 2𝛽𝑘𝐶 (𝜁 (3) (1 +
√︁
3 log(𝑇 )/2) + 3𝜎𝐶 log(𝑇 )/Δmin)

Here, 𝜁 is the Reimann zeta function and 𝜎 = Δmax/Δmin.

We remark here that for smaller values of Δmin, the regret
bound of Thm. 2.1 becomes vacuous. We now prove the weak

instance-dependent regret bound (see Theorem 2.2) and instance-
independent regret bound (Thm. 2.3) of the CV-UCB algorithm.

Theorem 2.2. The (weak instance-dependent) expected regret of
CV-UCB when the reward function satisfies Lipschitz condition (Prop-

erties 1 and 2) is given by

RCV-UCB (𝑇 ) ≤ 4𝐶
√︁
6𝑘𝜎𝑇 log(𝑇 ) + 2𝑘𝐶𝜁 (3).

Here, 𝜁 (.) is a Reimann zeta function and 𝜎 = Δmax/Δmin.

Observe that the regret guarantee increases from 𝑂 (log(𝑇 )) to
𝑂 (𝑇 log(𝑇 )) in the weak instance-dependent setting, where the de-
pendence shifts from the minimum reward gap Δmin to the reward
ratio 𝜎 . In our next result, we further mitigate the dependence on
𝜎 to achieve an instance-independent regret guarantee.

Theorem 2.3. 𝜆 = (1 +
√︁
3 log(𝑇 )/2) . The instance-independent

volatile bandit regret of CV-UCB when the reward function satisfies

Lipschitz condition (Properties 1 and 2) is given by

RCV-UCB (𝑇 ) ≤ 𝐶 (1 + 𝜆) · 3
√︃
6𝑘𝑇 2 log(𝑇 ) + 2𝑘𝜆𝐶𝜁 (3) .

Next, we consider the bounded smoothness condition.
Theorem 2.4. The expected volatile bandits regret incurred by CV-

UCBwhen the reward function satisfies bounded smoothness condition

(Properties 1 and 3), is given by

RCV-UCB (𝑇 ) ≤
(
6 log(𝑇 )/(𝑓 −1 (Δmin))2 + 2𝜁 (3)

)
𝑘 · Δmax .

Theorem 2.5. Let 𝑓 (𝑥) = 𝑝 · 𝑥𝑞 where 𝑝 > 0 and 𝑞 ∈ (0, 1]
and define 𝑟 =

𝑞
𝑞+2 . The (instance independent) expected volatile

bandits regret incurred by CV-UCB when the reward function satisfies

bounded smoothness condition (Properties 1 and 3) is given by

RCV-UCB (𝑇 ) ≤ (𝑘Δmax + 1) · 6𝑟 log(𝑇 )𝑟𝑇 1−𝑟𝑝1−𝑟 + 2𝑘𝜁 (3)Δmax .

3 FUTUREWORK

Extending regret guarantees of existing MAB algorithms such as
Thompson sampling and 𝜀-greedy to CV bandit setting is an inter-
esting future direction. A tight instance-independent regret bound
under bounded smoothness setting still remains an open problem
along with a finely tuned analysis with availability specific instead
of worst-case regret bound. Furthermore, a study of CV bandits
where the pulling strategy affects future unavailability of arms such
as in rotting bandits [12] is also an interesting future direction.

ACKNOWLEDGMENTS

Ganesh Ghalme gratefully acknowledges support from ANRF under
grant CRG/2022/007927 and Sujit Gujar under CRG/2022/004980.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2763



REFERENCES

[1] KumarAbhishek, GaneshGhalme, Sujit Gujar, and Yadati Narahari. 2021. Sleeping
Combinatorial Bandits. CoRR abs/2106.01624 (2021). arXiv:2106.01624 https:
//arxiv.org/abs/2106.01624

[2] Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner. 2013. Volatile Multi-Armed
Bandits for Guaranteed Targeted Social Crawling. the proceedings of AAAI 2013
2, 2.3 (2013), 16–21.

[3] Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. 2009. Mortal
Multi-Armed Bandits. In the proceedings of NIPS 2009.

[4] Aritra Chatterjee, Ganesh Ghalme, Shweta Jain, Rohit Vaish, and Y Narahari.
2017. Analysis of Thompson Sampling for Stochastic Sleeping Bandits.. In the

proceedings of UAI 2017.
[5] Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. 2016. Combinatorial

multi-armed bandit with general reward functions. In the proceedings of NIPS

2016.
[6] Wei Chen, Yajun Wang, and Yang Yuan. 2013. Combinatorial multi-armed bandit:

General framework and applications. In the proceedings of ICML 2013.
[7] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. 2016. Combinatorial

multi-armed bandit and its extension to probabilistically triggered arms. the

proceedings of JMLR 2016 17, 1 (2016).
[8] Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere,

and marc lelarge. 2015. Combinatorial Bandits Revisited. In the proceedings of

NIPS 2015.
[9] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. 2012. Combinatorial network

optimization with unknown variables: Multi-armed bandits with linear rewards
and individual observations. IEEE/ACM Transactions on Networking 2012 (2012).

[10] Ganesh Ghalme, Swapnil Dhamal, Shweta Jain, Sujit Gujar, and Y. Narahari.
2021. Ballooning multi-armed bandits. Artificial Intelligence 296 (2021), 103485.
https://doi.org/10.1016/j.artint.2021.103485

[11] Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. 2010.
Regret bounds for sleeping experts and bandits. the proceedings of Machine

learning 2010 80, 2-3 (2010).
[12] Nir Levine, Koby Crammer, and Shie Mannor. 2017. Rotting bandits. In the

proceedings of NIPS 2017.
[13] Fengjiao Li, Jia Liu, and Bo Ji. 2019. Combinatorial sleeping bandits with fairness

constraints. IEEE Transactions on Network Science and Engineering 2019 (2019).
[14] Laurence A Wolsey and George L Nemhauser. 1999. Integer and combinatorial

optimization. the proceedings of John Wiley & Sons 1999.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2764

https://arxiv.org/abs/2106.01624
https://arxiv.org/abs/2106.01624
https://arxiv.org/abs/2106.01624
https://doi.org/10.1016/j.artint.2021.103485

	Abstract
	1 Introduction
	1.1 Model and Assumptions

	2 CV-UCB Algorithm and Results 
	3 Future Work
	Acknowledgments
	References



