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ABSTRACT
Reservoir computing has seen renewed interest as a paradigm in
autonomous single and multi-agent systems due to its lightweight
training and ability to utilize a wide variety of digital and physical
substrates as reservoirs. Reservoir topologyplays a significant role in
determining the performance anddynamics of a given reservoir com-
puter. Previous work comparing different reservoir topologies has
ignored the interaction between the distribution of input nodes into
the reservoirandreservoir topology.This studyprovidesa significant
contribution by comparing effects of two different input node distri-
butions. Our results demonstrate that by concentrating input into an
arbitrary region in the reservoir one is able tonearlydouble the linear
memory performance of ring reservoir based reservoir computers.
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1 INTRODUCTION
Reservoir computing is a lightweight approach to training Recurrent
Neural Networks first introduced in [6] and then unified in [12].
Reservoir computing has seen a recent resurgence of interest as
a paradigm in autonomous systems due to its low computational
cost to train and operate and its substrate agnosticism allowing
it to be instantiated at the level of multi-agent swarms [9], indi-
vidual autonomous agents [2] and perhaps most interestingly in
sub-components of a single agent’s body [10] [3].

In its most orthodox form reservoir computer (RC) operation can
be expressed as:

𝑥 (𝑡) = 𝑓 (𝑊𝑖𝑛 𝑢 (𝑡)+𝑊𝑟𝑒𝑠 𝑥 (𝑡−1)) (1)
𝑦 (𝑡) = 𝑊𝑜𝑢𝑡 𝑥 (𝑡) (2)

Where 𝑥 (𝑡) ∈R𝑁×1 is the reservoir state vector at time 𝑡 , 𝑓 () is a
chosen activation function (typically 𝑡𝑎𝑛ℎ()) applied element-wise,
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𝑢 (𝑡) is the 𝑘-dimensional input vector at time 𝑡 ,𝑊𝑖𝑛 ∈R𝑁×𝑘 is the
input weight matrix,𝑊𝑟𝑒𝑠 ∈ R𝑁×𝑁 is the recurrently connected
reservoir weight matrix,𝑊𝑜𝑢𝑡 ∈R𝑁×𝑚 is the trained output weight
matrix where𝑚 is the dimensionality of the target and 𝑦 (𝑡) is the
RC output at time 𝑡 .

Typically𝑊𝑖𝑛 ,𝑊𝑟𝑒𝑠 and𝑊𝑜𝑢𝑡 are all randomly initialized and
only𝑊𝑜𝑢𝑡 is ever trained with the classical approach being closed
form linear regression to fit a matrix of reservoir state vectors to the
target time series using𝑊𝑜𝑢𝑡 . For more details on RC training and
best practices see [8].

In effect this approach relies on the temporal embedding of the in-
put timeseries in the reservoir tobe sufficientlyhighdimensional and
non-linear such that the task at hand can be solved using only a sin-
gle, typically linear readout layer in the form of𝑊𝑜𝑢𝑡 . Consequently
the topology of𝑊𝑟𝑒𝑠 has a pronounced effect on the performance of
the RC as a whole. Work such as [11], [4] and [7] have all dealt with
the impacts of reservoir topology onRCperformance, but these have
not taken into consideration the constraints of real-world applica-
tions. Additionally, impacts of the distribution of input nodes into
the reservoir given a specific topology have likewise been ignored.
We aim to advance the literature by comparing performance across
RCs equipped with the generic randomly distributed input nodes and a
selective input condition in which input nodes are concentrated into a
particular region of the reservoir. Our results reveal that a selective in-
put condition combined with a ring topology significantly boost linear
memory performance of the RC relative to an identical RC equipped
with the generic input condition.

2 METHODS
Random, ring, lattice and small world topologies were tested. All
reservoirswereof size𝑁 where𝑁 ∈ {25,50,100,200} except in thecase
of the small world reservoirs where 𝑁 was restricted to {100,200}.
Reservoir weights were assigned uniformly at random from [-1, 1]
and scaled such that spectral radius of𝑊𝑟𝑒𝑠 is 𝜌 which is common
practice in order to ensure reservoir stability [8]. In all cases 𝜌 =0.9

With random reservoirs each node is connected with each other
reservoir node with probability 𝑝 ∈ {0.05,0.1,0.2,1.0}. In the cases
of 𝑁 = 25 and 𝑁 = 50 𝑝 was limited to {0.2,1.0} and {0.1,0.2,1.0}
respectively in order to maintain a minimum degree of network
connectivity. Ring reservoirs were constructed such that given the
nodes of the reservoir in a continuous 1-D array, each node was
connected to itself as well as its 𝑟 nearest neighbors to the left and 𝑟
nearest neighbors to the right where 𝑟 ∈ {1,2,4,8}. Lattice reservoirs
were built similarly to ring reservoirs except the nodes were treated
as being arranged in a 2-D rather than 1-D array and the value 𝑟 was
varied such that 𝑟 ∈ {1,2,4}. Small world reservoirs were constructed
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Figure 1: RandomReservoir and Ring Reservoir Performance on Generic Digit Recall Task - Solid lines correspond to RCs using
generic input, dashed lines to selective input. In the case of random reservoirs on the left red corresponds to 𝑝 = 0.05, yellow
to 𝑝 = 0.1, blue to 𝑝 = 0.2 and green to 𝑝 = 1.0. In the case of ring reservoirs on the right blue corresponds to 𝑟 = 1, yellow to 𝑟 = 2,
green to 𝑟 =4 and red to 𝑟 =8.

by connected unconnected nodes in ring reservoirs with probabil-
ity 𝑝 ∈ {0.5,0.1,0.2}. Small world reservoirs were constructed for
each of the ringer reservoir configurations.𝑊𝑖𝑛 was generated using
two distinct methods across all reservoir configurations. In the first,
generic condition each entry in𝑊𝑖𝑛 was assigned a non-zero weight
𝑤 with probability 𝑝 where𝑤 ∈ [−0.1,0.1] and 𝑝 =0.1. In the second,
selective condition the first𝑚 entries in𝑊𝑖𝑛 were each assigned a
non-zero weight𝑤 where𝑤 ∈ [−0.1,0.1] and𝑚=0.1𝑁 .

Reservoirs were tested using three benchmark tasks: the generic
digit recall task (GDRT), the NARMA-10 task and the Santa Fe Laser
prediction task. The GDRT is a common means of testing an RC’s
linear memory capacity [13]. It consists of testing an RC’s ability to
reproduce a random signal following an arbitrary time lag 𝑘 . The
NARMA-10 task, first introduced in [1], requires the RC to produce a
target signal𝑦 (𝑡) derived using a standard polynomial 𝑃 (𝑥) and the
prior 10 time steps of 𝑥 (𝑡) where 𝑥 (𝑡) is pulled uniformly at random
from [0,0.5]. The task assesses the RCs ability to recall prior inputs
andperformnon-linearoperationson them.Lastly, theSantaFeLaser
prediction task, first introduced in [5], utilizes a chaotic time series
consisting of the precise recording of the firing times of an infrared
laser given in milliseconds. The task itself requires the RC to predict
the value of the time series at 𝑡+𝑛 given the time series up through 𝑡 ,
for increasing values of𝑛. Given the relatively small size of the reser-
voirs tested a value of 𝑛=1was only used. In the case of the generic
digit recall andNARMA-10 tasks a training set of 2000 anda test set of
1000datapointswereused. In thecaseof theSantaFeLaserprediction
task a training set of 6000 and a test set of 3000 data points were used.

3 RESULTS
For each task 15 different RCs of each of the possible reservoir config-
urationswere generated, and their errorwas recorded asNormalized
RootMean Square Error (NRMSE). For the sake of concision only the
results of the random and ring reservoir RCs are reported in depth.

With theGDRT random reservoirs noticeably improve in terms of
memory depth as the size of the reservoir increases, but demonstrate
no significant change between the two input conditions as shown
in 1. Maximal performance by random reservoir RCs is achieved by
the fully connected reservoir at 𝑁 = 200 with memory resolution
noticeably divergingnear𝑘 =25. As seen in 1 ring reservoirRCs show
a remarkable robustness in performance. In particular with larger
reservoirs of size 𝑁 ∈ {100,200} performance responds primarily to

input conditionwith the selective input condition far outperforming
the generic input condition. Ring reservoir RCs see their best per-
formance of divergence at 𝑘 =35with the selective input condition
at 𝑁 = 200 and 𝑟 = 8. Lattice and small world reservoirs see only
slight difference in performance between input conditions and do
not achieve the depth of the randomor selective input ring reservoirs.

With the NARMA-10 task random reservoirs similarly do not
respond to input condition and instead increase in performancewith
reservoir size. Random reservoirs see optimal performance with of
an NRMSE of 0.271 at 𝑁 =200with selective input and 𝑝 =0.2. Ring
reservoirs again show the greatest response to input condition, but
with theNARMA-10 task thegeneric input condition faroutperforms
the selective input condition. Optimal performance for ring reser-
voirs is achievedwith the generic input condition at𝑁 =200 and 𝑟 =8
with an NRMSE of 0.269. The selective input condition on the other
hand only achieves an optimal NRMSE of 0.371 also with 𝑁 = 200
and 𝑟 =8. Again lattice and small world reservoirs see only a slight
difference in performance between input condition and overall see
comparable performance between the random and ring reservoirs.

Lastly, with the Santa Fe Laser Task we see counterintuitive re-
sults in which RC performance seems to degrade as reservoir size
increases. With random reservoir RCs, the generic input reservoirs
achieve their best performance of an NRMSE of 0.577 at 𝑁 =25with
𝑝 =0.2 and selective input reservoirs achieve their best performance
of an NRMSE of 0.548 𝑁 =25 and 𝑝 =1.0. With ring reservoirs selec-
tive input RCs see their best performance of an NRMSE of 0.505 at
𝑁 =50 and 𝑟 =4 and generic input RCs see their best performance
of an NRMSE of 0.520 at𝑁 =25 and 𝑟 =4. The lattice and small world
reservoirs perform in a near identical manner.

4 DISCUSSION
The results from above show that utilizing a concentrated input
distribution with an ring topology significantly increases the RCs
linear memory performance to achieve best in class recall depth.
At the same time, this increased linear recall seems to come at the
cost of a marked decrease in the RCs ability to perform non-linear
information processing. These impacts are not seen with RCs using
a random reservoir topology.We attribute this to the far shorter path
length found in random reservoirs aswell as their less ordered signal
propagation.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2766



REFERENCES
[1] A. Atiya and A. Parlos. 2000. New results on recurrent network training: unifying

the algorithms and accelerating convergence. IEEE Transactions on Neural
Networks (2000).

[2] Paolo Baldini. [n.d.]. Reservoir Computing in robotics: a review. ([n. d.]). Preprint
at 10.48550/arXiv.2206.11222.

[3] Priyanka Bhovad and Suyi Li. 2021. Physical Reservoir Computing with Origami
and its Application to Robotic Crawling. Nature Scientific Reports (2021).

[4] MatthewDale et al. 2020. Reservoir computing quality: connectivity and topology.
Natural Computing (2020).

[5] Neil Gershenfeld and AndreasWeigend. 1994. The Future of Time Series. In Time
Series Prediction: Forecasting the Future and Understanding the Past.

[6] Herbert Jaeger. 2001. The" echo state" approach to analysing and training recurrent
neural networks-with an erratum note’. Bonn, Germany: German National

Research Center for Information Technology GMD Technical Report 148 (01 2001).
[7] Yuji Kawai et al. 2019. A small-world topology enhances the echo state property

and signal propagation in reservoir computing. Neural Networks (2019).
[8] Mantas Lukosevicius. 2012. A Practical Guide to Applying Echo State Networks.

In Neural Networks: Tricks of the Trade. Springer.
[9] Thomas Lymburn et al. 2021. Reservoir computing with swarms. Chaos (2021).
[10] Kohei Nakajima, Helmut Hauser, Tao Li, and Rolf Pfeifer. 2015. Information

Processing via Physical Soft Body. Nature Scientific Reports (2015).
[11] Ali Rodan and Peter Tino. 2011. Minimum Complexity Echo State Network. IEEE

Transactions on Neural Networks (2011).
[12] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. 2007. An exper-

imental unification of reservoir computing methods. Neural Networks (2007).
[13] ChesterWringe, Martin Trefzer, and Susan Stepney. [n.d.]. Reservoir Computing

Benchmarks: a review, a taxonomy, some best practices. ([n. d.]). Preprint
available at https://arxiv.org/abs/2405.06561.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2767


	Abstract
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	References



