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ABSTRACT
We investigate the problem of distributed training under partial ob-
servability, whereby cooperative multi-agent reinforcement learn-
ing agents (MARL) maximize the cumulative joint reward. We pro-
pose distributed value decomposition networks (DVDN) that gen-
erate a joint Q-function that factorizes into agent-wise Q-functions.
Whereas the original value decomposition networks rely on cen-
tralized training, our approach is suitable for domains where cen-
tralized training is either unavailable or unreliable and agents must
resort to learning by interacting with the physical environment in
a decentralized manner while communicating with their peers.
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1 INTRODUCTION
Cooperative multi-agent reinforcement learning focuses on design-
ing utility-maximizing agents that interact with a shared environ-
ment, where the system dynamics depend on their joint action.
Utility function representation for decision-making is challeng-
ing because of the large combined observation and action spaces.
Value decomposition networks (VDN) [5] avoid this combinatorial
trap by considering a factorized family of 𝑄-functions, yielding a
joint 𝑄-function that linearly decomposes between agents. This
approach offers a viable solution to the scalability of MARL systems
at the cost of constraining the set of representable joint𝑄-functions
. Another limitation is that VDN is relies centralized training with
decentralized execution.

However, in many real-world scenarios, the premise of central-
ized training is too restrictive. For instance, in reinforcement learn-
ing based distributed1 load balancing [10] intelligent switches act

1We use distributed and decentralized interchangeably.
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as agents to distribute various types of requests to a data center’s
server fleet. The agents assign incoming load to the servers, resolv-
ing requests at low latencies under quality-of-service constraints.
In this domain there is no simulator, agents learn online, observing
queue lengths at links and selecting links to route requests. The
reward is the change in queue length within the overall system.

Therefore, we propose decentralized training RL agents, which
do not rely on a central node for computing decentralized poli-
cies and the joint 𝑄-function. Unlike independent learners, DVDN
agents produce𝑄-functions that combine linearly to form a joint𝑄-
function. Thus, DVDN agents implicitly encode information about
their teammates’ actions through local peer-to-peer communica-
tion. In homogeneous settings, gradient tracking [4] can emulate
parameter sharing in the decentralized setting, further enhancing
the learning process.

2 PRELIMINARIES
Value decomposition networks [5] are deep RL agents that implicitly
learn additive value decomposition over individual agents captured
by the relation:

𝑄VDN (𝑜, 𝑎;𝜔) =
𝑁∑︁
𝑖=1

𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ;𝜔𝑖 ). (1)

where 𝜔 is the concatenation of the individual network parameters
𝜔𝑖 , 𝑜 and 𝑎 represent the concatenation over the agents’ observa-
tions and actions respectively. The local temporal difference (TD) 𝛿𝑖
is given by a deep 𝑄-network [2]:

𝛿𝑖 = 𝑅 + 𝛾 max
𝑢𝑖

𝑄𝑖 (𝑜′𝑖 , 𝑢𝑖 ;𝜔
−
𝑖 ) −𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ;𝜔𝑖 ).

where 𝛾 is the discount factor, 𝑅 is the team reward at the next
time step, 𝜔−

𝑖
are the parameters of a target network, and the max

operator over the target network 𝑄-function at the next step fol-
lows the𝑄-leaning update [8]. In centralized training, the temporal
differences are summed. As a result, agents receive temporal differ-
ence feedback from the network. The error increment guiding the
weight updates at each agent is the joint temporal difference (JTD)
𝛿 = Σ𝑁

𝑖=1𝛿𝑖 [7].

3 DISTRIBUTED VALUE DECOMPOSITION
NETWORKS

In decentralized training, there is no overseer capable of performing
addition over the local temporal differences. Thus, there is no direct
way to obtain the joint temporal difference. We propose the use of
the consensus mechanism [9] whereby each agent updates its TD
with a weighted average of its previous TD and TDs of its neighbors:
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𝛿
(𝑘+1)
𝑖

=

𝑁∑︁
𝑗

𝛼
(𝑘 )
𝑖, 𝑗

𝛿
(𝑘 )
𝑗

𝑘 = 1, 2, . . . , (2)

for a system consisting of 𝑁 agents. The coefficients
[
𝛼𝑖, 𝑗

]
𝑁×𝑁 are

the consensus weights, which are non-zero for agent 𝑖 and its neigh-
bors (Appendix [7]). These coefficients change following a network
topology dynamics. By repeatedly applying this procedure, agents
asymptotically agree (reach consensus) on an average JTD (𝛿/𝑁 ) un-
der mild assumptions. Since it is impossible to guarantee consensus
with a finite number of steps, so we limit the number of consensus
iterations during training. From these local approximations, agents
recover network estimated JTD: 𝛿−𝑖 = 𝑁 (∑𝑁

𝑗 𝛼
(𝑘 )
𝑖, 𝑗

𝛿
(𝑘 )
𝑗

) − 𝛿
(𝑘 )
𝑖

. The
index −𝑖 represents an estimator at agent 𝑖 of the network average
excluding its own temporal difference. DVDN agents minimize the
mean square error criteria:

ℓ (𝜔𝑖 ;𝜏𝑖 , 𝛿−𝑖 ) =
1
𝑇

∑︁
𝜏𝑖

(
𝛿𝑖 + 𝛿−𝑖

)2
(3)

where 𝜏𝑖 is the batch of trajectories for agent 𝑖 and 𝑇 denotes the
episode length, the network-estimated JTD term allows agents to
adjust their weights based on the error increments at their peers.

In settings with homogeneous agents, where agents have the
same observation space and action spaces, gradient tracking (GT) [4]
can align their parameters and gradient updates. GT allows agents
to aggregate their knowledge, emulating parameter sharing [1] in
the decentralized setting. Distributed value decomposition agents
with gradient tracking DVDN (GT) perform the update in (2) while
producing localized estimators for the average network parameter
and the average gradient. For an arbitrary batch update 𝑘 :

𝛿
(𝑘 )
−𝑖 = 𝑁

©«
𝑁∑︁
𝑗=1

𝛼
(𝑘 )
𝑖, 𝑗

𝛿
(𝑘 )
𝑗

ª®¬ − 𝛿
(𝑘 )
𝑖

(4a)

𝑔
(𝑘 )
𝑖

= ∇ℓ (𝜔 (𝑘−1)
𝑖

;𝜏 (𝑘 )
𝑖

, 𝛿
(𝑘 )
−𝑖 ) (4b)

𝑧
(𝑘 )
𝑖

=

𝑁∑︁
𝑗=1

𝛼
(𝑘 )
𝑖, 𝑗

𝑧
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𝑖

− 𝑔
(𝑘−1)
𝑖

(4c)

𝜔
(𝑘 )
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=
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𝑗=1

𝛼
(𝑘 )
𝑖, 𝑗

𝜔
(𝑘−1)
𝑖

− 𝜂𝑧
(𝑘 )
𝑖

(4d)

where the variable 𝑔 (𝑘 )
𝑖

tracks the local gradient (3), 𝑧 (𝑘 )
𝑖

tracks
the team gradient, and the parameter 𝜔 (𝑘 )

𝑖
is updated using the

weighted average parameter from neighbors and the team gradient.
We open source the codebase with the implementation of both
algorithms2.

4 RESULTS
We showcase our approach in two standard MARL benchmark envi-
ronments with partial observability.3 At each training step, agents
execute consensus iteration ( (2), (4a), (4c), (4d)) per consensus equa-
tion, over a connected graph. Table 1 provides results for DVDN
2https://github.com/GAIPS/DVDN
3For extra experimental configurations and analysis of the results, refer to Sections 4
and 5 [7].

Table 1: Maximum average episodic returns over ten inde-
pendent seeds, their respective 95% bootstrapped confidence
interval for all algorithms and tasks. Highlighted results are
those with the higher maximum average episodic returns.
The asterisk denotes results that match the performance of
the best result for the task. The double asterisk denotes re-
sults that are second in the rank.

Heterogenous
Env. Scenarios IQL DVDN VDN

M
A
RB

LE
R

Arctic −43.51
(−1.64, 1.65)

−37.56∗∗
(−1.01, 0.84)

−30.93
(−0.70, 0.76)

Material 12.81
(−0.49, 0.51)

18.07∗∗
(−1.14, 1.30)

21.82
(−0.36, 0.36)

PCP 130.72∗∗
(−0.81, 0.76)

133.02
(−0.67, 0.78)

125.10
(−2.57, 3.09)

Warehouse 21.99
(−0.42, 0.38)

28.74
(−0.45, 0.45)

23.65∗∗
(−0.90, 0.93)

Homogeneous
IQL DVDN (GT) VDN (PS)

LB
F

Easy 0.81
(−0.02, 0.02)

0.89∗∗
(−0.02, 0.02)

0.94
(−0.01, 0.01)

Medium 0.61
(−0.02, 0.02)

0.72∗∗
(−0.01, 0.02)

0.79
(−0.02, 0.02)

Hard 0.43
(−0.01, 0.02)

0.52∗∗
(−0.01, 0.02)

0.56
(−0.02, 0.02)

in the MARBLER [6] environment, where heterogeneous robotic
agents are faced with four different navigation tasks, and DVDN
(GT) in three level-based foraging tasks, where homogeneous agents
must coordinate to collect fruits in a sparse reward environment.
We evaluate DVDN’s performance against independent deep-𝑄
learners (IQL) [3], VDN [5], and VDN with parameter sharing [3]
(VDN (PS)). IQL serves as a lower performance threshold while
VDN acts as a performance ceiling.

In the homogeneous agents setting, results show that DVDN
(GT), which has information loss due to the communication network
dropping out links, approximates the performance of VDN (PS). In
the heterogeneous agents setting, results show that DVDN not only
approximates but can even exceed the performance of VDN. We
hypothesize that DVDN weight updates generate policies that are
more effective in the exploration of some tasks.
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