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ABSTRACT
This study investigates the emergent cooperative tendencies of
systems of Large Language Model (LLM) agents in a social dilemma.
Unlike previous research, where LLMs output individual actions,
we prompt state-of-the-art LLMs to generate complete strategies
for iterated Prisoner’s Dilemma. Our findings reveal that LLMs
exhibit biases when prompted to display certain behavioural dispo-
sitions, and the format of the prompt affects the relative success of
aggressive versus cooperative strategies.
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1 INTRODUCTION
The increasing deployment of autonomous agents based on Large
Language Models (LLMs) [17] in real-world applications necessi-
tates an examination of their collective impact on machine-machine
interactions and human culture [4]. Furthermore, the development
of social capabilities in these agents may lead to skills usable for
both pro-social and anti-social purposes, termed differential capa-
bilities. [6]. This duality raises questions about the propensity for
cooperation and conflict in autonomous agent interactions.

Social dilemmas pose inherent risks, as rational behaviour by
competent agents can lead to poor collective outcomes [14]. Further-
more, if agents succeed through aggressive behaviours, competitive
pressures can drive systems towards suboptimal equilibria [1]. Our
research employs the iterated Prisoner’s Dilemma (IPD) [2, 3, 5] to
evaluate the balance between pro-social and anti-social behaviours
exhibited by state-of-the-art LLM agents.

Prior assessments of LLMs have evaluated their capacity to en-
gage in various multiplayer games [9, 12, 15, 21–23]. Convention-
ally, LLMs are prompted to output a single action in response to a
given game state or trajectory, however LLMs can struggle when
tasked with making decisions at this level of granularity [7]. In
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such scenarios, they can fail to identify basic patterns, such as an
opponent mirroring their own moves.

In response, we use LLMs to create strategies in natural language,
which are subsequently implemented as algorithms. This method
enables the LLMs to craft their behaviour at a high level. For ex-
ample, with our approach, we observe that many LLM strategies
utilise pattern recognition and implement sub-functions to accu-
rately detect simple patterns up to a fixed length. Additionally, our
method facilitates behaviour checking, enabling users to inspect the
strategy, test for safety and robustness, and explore the potential
implications prior to deployment.

2 STRATEGY GENERATION
We employ LLMs to create natural language strategies to play IPD.
Each match consists of 1000 rounds of Prisoner’s Dilemma (Table 1).
In any given round, defect (D) is the dominant action, leading to
a higher payoff regardless of their opponents’ choice of action.
Mutual defection, however, provides a low payoff, so players want
to incentivise their opponent to cooperate (C).

Table 1: Prisoner’s Dilemma

𝐶 𝐷

𝐶 3, 3 0, 5
𝐷 5, 0 1, 1

We prompt the LLMs to exhibit specific behaviours in their strate-
gies, which we term their attitude, from the following set:

Attitudes = {Aggressive,Cooperative,Neutral}
Recognising that different prompting techniques can yield varying
performance [8, 10, 11, 13, 16, 18, 19], we experiment with different
techniques to explore output variability. We use three different
prompt styles, described in Table 2.

In this extended abstract, we show the results for ChatGPT-4o,
as it is a popular frontier model. For each prompt style and attitude,
we create 25 strategies in natural language, and use ChatGPT-4o to
rewrite the strategies in Python. See our GitHub1for full details of
the prompts and the generated strategies, and our full paper [20]
for more results, including a comparison to Claude 3.5 Sonnet.

3 RESULTS
For each prompt style, we enter the 75 strategies into all-play-all
IPD tournaments, repeated 20 times, and aggregate the typical
1https://github.com/willis-richard/evollm
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Table 2: Prompt styles

Default The LLM is provided with information about the game
and prompted to create a strategy in natural language
exhibiting the desired attitude.

Refine The LLM is initially promptedwith the Default prompt
above. We then use Self-Refine [11] as follows: (i) the
LLM is prompted to provide a list of critiques of the
strategy, before ii) tasking the LLM with rewriting the
strategy taking into account the critique.

Prose The Prose prompt samples a scenario description with
the same dynamics of Prisoner’s Dilemma from a set
of four, such as a diplomatic negotiation around trade
protocols. The LLM is prompted to create a high-level
strategy for the scenario, and then to convert the sce-
nario strategy to apply to IPD.

Table 3: Normalised head-to-head payoffs

Prompt Aggressive Cooperative Neutral

Default Aggressive 1.81 2.09 2.26
Cooperative 1.55 3.00 2.99
Neutral 1.55 2.99 2.99

Refine Aggressive 2.20 2.57 2.63
Cooperative 2.53 2.99 2.99
Neutral 2.55 2.97 2.97

Prose Aggressive 1.65 2.29 2.35
Cooperative 2.08 2.82 2.89
Neutral 2.12 2.89 2.93

head-to-head scores for different pairings of attitudes. In Table 3 we
show the normalised payoff: the mean round payoff received in the
tournaments. This is necessarily in the range [1,5] for Prisoner’s
Dilemma (Table 1).

Across all prompt styles, we observe that the cooperative and
neutral strategies achieve a payoff equivalent to that of mutual
cooperation when paired against each other, while the inclusion of
an aggressive strategy reduces the payoff for both players. With the
Refine and Prose prompts, aggressive strategies are dominated by
both the cooperative and neutral strategies, so users have no incen-
tive to choose an aggressive attitude with this model in a system
with these dynamics. However, the aggressive strategies consis-
tently outperform the opponent: adopting an aggressive approach
reduces one’s own payoffs, but it is even more detrimental to the
opponent. When using the Default prompt, aggressive strategies
are the best response to an aggressive opponent.

Compared to the Default prompt, a Refine prompt improves the
performance of aggressive strategies without negatively impacting
neutral and cooperative strategies. This improvement stems from
aggressive strategies favouring increased cooperation, leading to
higher payoffs for both players. The Prose prompt similarly en-
hances the performance of aggressive strategies against neutral and
cooperative opponents, but actually harms performance against
another aggressive strategy.

We enter the strategies generated using the Refine prompt into
an IPD tournament against human-written algorithms to assess

Figure 1: Beaufils tournament: ChatGPT-4o + Refine

how robust they are to a range of behaviours. We use the setup from
Beaufils [3], containing 11 well known algorithms, including Tit-
For-Tat, which starts with cooperate and thenmirrors its opponent’s
previous action, and Random, which arbitrarily chooses between
cooperation and defection in each round. Figure 1 displays the
median of the tournament scores (the mean round payoff in a
single tournament) for each strategy, and a violin depicting the
distribution of tournament scores over 200 different seeds.

4 DISCUSSION
Our findings highlight the impact of different prompting tech-
niques on strategy creation and their potential influence on differ-
ential capabilities. Across all prompts, we observe similar perfor-
mance between neutral and cooperative attitudes. This suggests
that ChatGPT-4o has cooperative biases and is inclined to behave
cooperatively even when asked to be neutral. We hypothesise that
the observed cooperative biases may stem from fine-tuning pro-
cesses aimed at aligning the models with human values, potentially
instilling a preference for cooperative behaviours.

Aggressive strategies tend to underperform compared to other
attitudes, so users have few incentives to employ such an approach.
However, with the Default prompt, aggression is the best response
to opponents using aggressive strategies, creating a danger that
aggressive equilibria could be self-sustaining. The Refine prompt
improved the performance of aggressive strategies, reducing the
performance gap to the cooperative and neutral strategies, which
could be potentially dangerous, as it enhances the viability of ag-
gressive strategies. These results emphasise the need for careful
consideration of prompting techniques in the design and deploy-
ment of LLM-basedMAS, as they can significantly affect the balance
between cooperation and conflict.
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