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ABSTRACT
Cooperative Multi-agent Reinforcement Learning (CMARL) has
great potential for developing coordinated strategies that optimize
team performance. However, common methods often fail to prop-
erly separate and utilize individual experiences due to a lack of
effective team reward decomposition. The Heuristics-assisted Ex-
perience Replay Strategy (HAER) addresses this by decomposing
team rewards into individual rewards and enabling efficient experi-
ence replay in MARL. By maintaining network gradient invariance,
we derive a partial differential equation for the individual reward
function, allowing accurate calculation of TD-errors and experience
importance. The Cooperative Multi-Objective Swarm Optimization
(CMOSO) algorithm is used to balance TD-errors and individual re-
wards for efficient learning. Extensive experiments on benchmarks
demonstrate HAER’s effectiveness, with up to a 17.6% performance
boost in the homogeneous SMACV2 scenario and an average 8%
improvement in GRF for heterogeneous agent cooperation.
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1 INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) enables agents to
learn coordinated behaviors for common goals, with agents inter-
acting by taking joint actions, transitioning to new global states,
and receiving shared team rewards [9, 10, 16, 21]. Effective coor-
dination is essential for maximizing cumulative team rewards [5],
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and exploration is a common approach in MARL [4, 8, 19]. How-
ever, relying solely on exploration can be inefficient, particularly
in identifying actions leading to sparse rewards [12, 14].

Reward decomposition, which breaks down the team reward
into individual contributions, is crucial for coordination [22], but
sparse or uneven rewards complicate this process [7, 13]. Existing
methods often rely on domain-specific rules [18], limiting generaliz-
ability across tasks [17]. Recent approaches, such as MASER [3] and
DIFFER [2], offer improvements through subgoals and reward de-
composition, yet they often fail to address the challenges posed by
heterogeneous agents with different capabilities, which can affect
reward decomposition and generalizability [1, 20].

To address the challenges in existing methods, we perform re-
ward decomposition while preserving network gradient invariance,
allowing the extraction of individual temporal difference (TD) er-
rors and rewards.We then construct an individual experience replay
buffer, denoted as 𝜒 ind

𝑗
=

(
𝑠𝑖𝑡 , 𝑎

𝑖
𝑡 , 𝑟𝑖 , 𝑠

𝑖
𝑡+1, 𝛿𝑖 , 𝜎𝑖 , 𝐻𝑖

)
, where key fac-

tors like 𝛿𝑖 , 𝜎𝑖 , 𝐻𝑖 , and 𝑟𝑖 guide experience selection to optimize
learning efficiency, diversity, and fairness. To balance exploration
and exploitation, especially in heterogeneous and sparse reward
environments, we use a Cooperative Multi-Objective Swarm Opti-
mization (CMOSO) algorithm to optimize experience prioritization.
This leads to the HAERS framework, which enhances training effi-
ciency and agent performance in multi-agent systems.

2 PRELIMINARY
The cooperative multi-agent reinforcement learning problem is
modeled as a Decentralized Partially Observable Markov Decision
Process (DEC-POMDP) [6], defined by ⟨𝑁,O,A, 𝑃, 𝑅,𝛾⟩, where
𝑁 = {1, 2, . . . , 𝑛} is the set of agents, O is the joint observation
space, and A is the joint action space. The transition function 𝑃

governs state dynamics, and 𝑅 is the shared team reward, with 𝛾 as
the discount factor.

At each step 𝑡 , each agent 𝑖 observes 𝑜𝑖𝑡 and selects an action
𝑎𝑖𝑡 based on its policy 𝜋𝑖 . The joint action 𝑎𝑡 = (𝑎1𝑡 , . . . , 𝑎𝑛𝑡 ) results
in a team reward 𝑅(𝑜𝑡 , 𝑎𝑡 ) and transitions to the next state 𝑜𝑡+1
based on 𝑃 (𝑜𝑡+1 |𝑜𝑡 , 𝑎𝑡 ). The objective is to find policies {𝜋𝑖 }𝑛

𝑖=1
that maximize the expected cumulative discounted team reward:
𝐽 (𝜋) = E𝜏∼𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑅(𝑜𝑡 , 𝑎𝑡 )
]
.
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3 METHOD
In DEC-POMDP, individual rewards are not directly observable. To
compute individual rewards while maintaining gradient invariance,
we introduce the Reward Decomposition Module (RDM) within the
Actor-Critic architecture. The individual reward 𝑟𝑖 is derived from
the team reward and value functions as:

𝑟𝑖 =

(
𝑅 + 𝛾�̃�c −𝑉c

) 𝜕𝑉c
𝜕𝑉𝑖

− 𝛾�̃�𝑖 +𝑉𝑖 ,

where 𝑅 is the immediate team reward, 𝛾 is the discount factor, 𝑉c
and �̃�c are the centralized value functions, and 𝑉𝑖 and �̃�𝑖 are the
local value functions for agent 𝑖 . Additionally, the following metrics
are computed for each agent:

𝛿𝑖 = 𝑟𝑖+𝛾�̃�𝑖−𝑉𝑖 , 𝜎𝑖 =
���̃�𝑖 −𝑉𝑖

�� , 𝐻𝑖 = −
∑︁
𝑎∈A

𝜋𝜃𝑖 (𝑎 |𝑠
𝑖
𝑡 ) log𝜋𝜃𝑖 (𝑎 |𝑠

𝑖
𝑡 ) .

These metrics help prioritize individual experiences, which are
stored in a replay buffer:

𝜒 ind𝑗 =

(
𝑠𝑖𝑡 , 𝑎

𝑖
𝑡 , 𝑟𝑖 , 𝑠

𝑖
𝑡+1, 𝛿𝑖 , 𝜎𝑖 , 𝐻𝑖

)
.

The Experience Prioritization Module (EPM) evaluates the prior-
ity of experiences using the score:

𝑒 𝑗 = 𝑤1 |𝑟 𝑗 | +𝑤2 |𝛿 𝑗 | +𝑤3𝜎 𝑗 +𝑤4𝐻 𝑗 + 𝜖.

To optimize the weighting factors𝑤1,𝑤2,𝑤3,𝑤4, the Coopera-
tive Multi-Objective Swarm Optimization (CMOSO) algorithm is
used. In this algorithm, the particles x1 and x2 represent potential
solutions for the weighting factors. These particles evolve over time
according to the update equations:

x1 (𝑡 + 1) = x1 (𝑡) + 𝜂 [x2 (𝑡) − x1 (𝑡)] + 𝜎 (𝑡)𝑟1Δ′
2 (𝑡),

x2 (𝑡 + 1) = x2 (𝑡) + 𝜂 [x1 (𝑡) − x2 (𝑡)] + 𝜎 (𝑡)𝑟2Δ′
1 (𝑡),

where 𝜂 is the learning rate, and 𝜎 (𝑡) controls the exploration-
exploitation balance. The values 𝑟1 and 𝑟2 are random variables,
which introduce stochasticity to the search process, helping the
algorithm explore different regions of the solution space. The terms
Δ′
1 (𝑡) and Δ′

2 (𝑡) are the adjusted velocities of the particles, deter-
mining how far each particle moves in each update.

4 EMPIRICAL RESULTS
We test HAERS in both homogeneous and heterogeneous agent
settings, using GRF and SMAC as benchmark environments, demon-
strated in Figure1. The comparison algorithms include MAPPO [15],
known for its stable policy updates and efficiency in MARL, and
HAPPO [20], a trust region learning method suitable for adaptive
agents in dynamic, collaborative environments. Additionally, we
compare against A2PO [11], a sequential policy update method that
has demonstrated strong performance across cooperative MARL
benchmarks, and DIFFER [2], which focuses on reward decomposi-
tion and experience replay strategies, to evaluate their effectiveness
in handling sparse rewards and uneven agent capabilities.

4.1 Hyperparameter Sensitivity Analysis
Weexamine the hyperparameter optimization performed byCMOSO
and assess whether its convergence positively impacts the over-
all performance of HAERS. We visualize the training trends of
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Figure 1: Performance comparison across GRF and SMAC
scenarios for A2PO, MAPPO, HAPPO, DIFFER and HAERS.

𝑤1,𝑤2,𝑤3,𝑤4 over the training steps in GRF, which demonstrates
that CMOSO effectively improves the performance of HAERS.
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Figure 2:Hyperparameter evolution andperformance inGRF:
Values of𝑤1,𝑤2,𝑤3,𝑤4 across training steps.

5 CONCLUSION
This paper presents HAERS, a self-adaptive reward decomposition
method for addressing sparse and uneven reward distributions in
MARL. By maintaining gradient invariance, we derive a partial
differential equation for the individual reward function, enabling
accurate TD-error calculation and experience evaluation. Individual
experience selection is framed as a multi-objective optimization
problem, and a suitable algorithm balances exploration and ex-
ploitation. Experiments in benchmark environments showHAERS’s
effectiveness in both homogeneous and heterogeneous scenarios
with sparse rewards, improving MAPPO by 12.4% in homogeneous
and 10.1% in heterogeneous GRF scenarios, thus enhancing team
performance through optimized reward allocation.
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