
Efficient Model Checking with Semantically-Equivalent Models
for vGOAL
Extended Abstract

Yi Yang
imec-DistriNet, KU Leuven

Leuven, Belgium
yi.yang@kuleuven.be

Tom Holvoet
imec-DistriNet, KU Leuven

Leuven, Belgium
yi.yang@kuleuven.be

ABSTRACT
Model checking offers a powerful approach to ensuring safety
and reliability in autonomous systems. However, existing model-
checking approaches for agent programming languages (APLs) face
challenges in equivalent semantic mapping, efficient model genera-
tion, and integration with high-performance model checkers. We
present a computation tree logic (CTL) model-checking framework
for vGOAL, where both the interpreter and model-checking frame-
work share the same state update implementations. Our framework
establishes semantically equivalent models of vGOAL programs,
implements efficient state space generation, and integrates with the
NuSMV model checker. Through a case study of an autonomous
logistic system with up to three robots, we demonstrate significant
improvements in model-checking efficiency, enabling verification
of complex autonomous systems.

KEYWORDS
CTL Model Checking,vGOAL, Autonomous Decision-Making
ACM Reference Format:
Yi Yang and TomHolvoet. 2025. Efficient Model Checking with Semantically-
Equivalent Models for vGOAL: Extended Abstract. In Proc. of the 24th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
As autonomous systems become more prevalent, APLs like AgentS-
peak [5], Gwendolen [11], and GOAL [17] have emerged as essen-
tial tools for programming autonomous decisions. These languages
are designed to model autonomous decision-making by enabling
agents to perceive their environment and make decisions based on
rules. Formal verification through model checking offers a promis-
ing approach to ensure their reliability [22, 25], and numerous
efforts have been dedicated to model checking agent programs [2–
4, 8, 12–14, 16, 18, 21, 24, 26, 29]. Existing methods face significant
challenges in semantic equivalence, model generation efficiency,
and scalability [3, 15, 16, 21].

Modern advancements in model checkers enable handling state
spaces with hundreds of millions of states [1, 6, 7, 9, 19], making
them suitable for verifying complex autonomous systems. However,

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

applying these to APLs involves difficulties such as semantically-
equivalent model generation, inefficiency of interpreters, and lim-
ited scalability for multi-agent settings. Current interpreter-based
frameworks like MCAPL [10] and IMC [20, 21] have been ap-
plied to languages such as Gwendolen, GOAL, and AgentSpeak
[18] but show limitations like inefficiency [16]. Alternative non-
interpreter-based methods [3] suffer from complicated semantic
mapping from agent programs to the input format for a model
checker, like Promela [23]. Our recent work [27, 29] ensures seman-
tic equivalence for GOAL programs but is constrained to single-
agent systems.

To address these challenges, we develop a CTL model-checking
framework for vGOAL [28], a variant of GOAL designed for veri-
fiable autonomous decision-making. Our framework makes three
key contributions: (1) establishing semantically-equivalent mod-
els for vGOAL programs, (2) developing an efficient state space
generation algorithm, and (3) integrating NuSMV for efficient CTL
model-checking. To demonstrate the practical application and scal-
ability of our framework, we conduct a case study involving a logis-
tics transportation system with multiple autonomous robots. The
results demonstrate substantial improvements in verification effi-
ciency and scalability, establishing a foundation for model-checking
complex multi-agent autonomous systems programmed in vGOAL.

2 CTL MODEL-CHECKING FRAMEWORK
The CTL model-checking framework for vGOAL is designed to
enable the efficient verification of the semantically-equivalent mod-
els of vGOAL programs. The vGOAL model-checking framework
is an interpreter-based model-checking framework, and it shares
the same state update implementationits with its interpreter [30],
enabling semantically-equivalent model generation. As illustrated
in Figure 1, the framework consists of three components: non-
deterministic modeling, NuSMV encoding, and NuSMV verification.
Our primary focus is on the first two components—non-deterministic
modeling and NuSMV encoding. Non-deterministic modeling en-
compasses both the generation of semantically-equivalent models
and the implementation of efficient model generation techniques.

Non-Deterministic Modeling. The semantically-equivalent model
generation begins by constructing a transition system from a given
vGOAL program. The transition system captures all possible states,
transitions, and terminal states of the program. Each state is it-
eratively expanded to explore all agent transitions, with terminal
states identified when agents have completed their goals. By shar-
ing state update implementations with the vGOAL interpreter, the
framework ensures the generated model accurately reflects the

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2804

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

vGOAL Program

Non-deterministic Modeling

NuSMV Encoding

NuSMV Verification

CTL Model-Checking Analyses

CTL Model-checking Process

Transition System

SMV File

Figure 1: The Overview of CTL Model-Checking Framework
for vGOAL.

exact execution behavior of the original program. This equivalence
can be formally established through the existence of a bisimulation
relation between the transition system and all possible executions
of the vGOAL program. Additionally, atomic proposition labeling
is employed to represent properties based on state attributes.

To enhance efficiency, optimizations are applied during state ex-
ploration. A caching mechanism prevents redundant computation
for revisited states, and deterministic updates efficiently handle in-
stances where agents switch focus between goals. Both techniques
contribute to significant computational savings without compro-
mising semantic correctness. An example of a generated transition
system illustrates the iterative state expansion and the way agent
transitions are modeled, showcasing the straightforward repre-
sentation of non-deterministic agent behaviors. The framework
implements an optimization for state exploration in the form of an
improved expansion function. This function incorporates a caching
mechanism to store previously computed transitions, significantly
reducing redundant computations when states are revisited. For
scenarios in which agents dynamically switch focus between goals,
the approach efficiently updates transitions to reflect the altered
goal prioritization. The improved function produces a transition
system that is identical to the one generated by the original method,
ensuring full correctness while delivering better computational
efficiency.

NuSMV Encoding. Once the transition system is generated, it is
encoded into a NuSMV-compatible format. This encoding process
begins by preprocessing the system’s properties, including safety,
error, and termination conditions defined in the vGOAL program.
These properties are classified and mapped to the states of the tran-
sition system. The encoding process converts each component of
the transition system—states, transitions, terminal states, atomic
propositions, and associated properties—into their respective rep-
resentations in an SMV file. This automated encoding includes
CTL properties for safety (to ensure that no undesirable states are

reached) and liveness (to check the existence of paths leading to
terminal states). For example, for a transition system representing
agent behaviors, the encodingmight specify that the agent is always
in a safe or valid state and check the existence of error-free paths to
a terminal state. These CTL properties enable NuSMV to validate
the program’s correctness and reliability, ensuring the autonomous
system behaves as designed.

NuSMV Verification. NuSMV takes the encoded SMV file as input
and automatically performs the CTL model-checking analysis, and
it produces the CTL model-checking analysis as the output, indicat-
ing whether the specified CTL properties are satisfied or not. These
results are crucial for validating the reliability and correctness of
the vGOAL program, ensuring that the autonomous system behaves
as intended.

3 EMPIRICAL ANALYSES
We evaluated our CTL model-checking framework through a case
study of an autonomous logistics system, comparing the original
framework against the improved version that incorporates efficient
model generation algorithms. The experiments were performed
under three configurations involving one, two, and three agents,
each capable of managing multiple delivery goals.

Our analysis revealed that both the number of goals and agents
correlate positively with the state space size, with agent count
having a more significant impact. Notably, the state space converges
to a finite value regardless of further increases in goals or agents.
The improved framework consistently outperforms the original
version across all test scenarios, with modeling time dominating
the overall execution time in both versions.

The performance gap between the two versions becomes more
significant as system complexity increases. This superior perfor-
mance stems from reducing the time complexity from 𝑂 (𝑔𝑜𝑎𝑙𝑠 ×
𝑠𝑡𝑎𝑡𝑒𝑠) to𝑂 (𝑠𝑡𝑎𝑡𝑒𝑠). This optimization proves particularly valuable
for complex scenarios involving multiple goals and agents, where
the original framework’s performance degrades significantly.

4 CONCLUSIONS AND FUTUREWORK
This paper presents a comprehensive CTL model-checking frame-
work for vGOAL that effectively addresses three major challenges
in APL model-checking: semantically-equivalent mapping, efficient
model generation, and integration with efficient model checkers.
Through empirical analysis of 30 scenarios, we demonstrate that
our efficient model generation algorithm significantly reduces time
complexity while efficiently verifying complex autonomous sys-
tems, with the notable observation that state space converges to a
constant number as goals increase. Future work will explore the
theoretical underpinnings of state space convergence in vGOAL
programs, aiming to simplify model generation by identifying the
point of convergence and enhancing the verification of multi-goal
autonomous systems.

ACKNOWLEDGEMENTS
This research is partially funded by the Research Fund KU Leuven.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2805

REFERENCES
[1] Roman Andriushchenko, Alexander Bork, Carlos E Budde, Milan Češka, Kush

Grover, Ernst Moritz Hahn, Arnd Hartmanns, Bryant Israelsen, Nils Jansen,
Joshua Jeppson, et al. 2024. Tools at the Frontiers of Quantitative Verification.
arXiv preprint arXiv:2405.13583 (2024).

[2] Rafael H Bordini, Louise A Dennis, Berndt Farwer, andMichael Fisher. 2008. Auto-
mated verification of multi-agent programs. In 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 69–78.

[3] Rafael H Bordini, Michael Fisher, Carmen Pardavila, and Michael Wooldridge.
2003. Model checking AgentSpeak. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems. 409–416.

[4] Rafael H Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge. 2004.
Verifiable multi-agent programs. In Programming Multi-Agent Systems: First In-
ternational Workshop, PROMAS 2003, Melbourne, Australia, July 15, 2003, Selected
Revised and Invited papers 1. Springer, 72–89.

[5] Rafael H Bordini and Jomi F Hübner. 2005. BDI agent programming in AgentSpeak
using Jason. In International workshop on computational logic in multi-agent
systems. Springer, 143–164.

[6] Carlos E Budde, Arnd Hartmanns, Michaela Klauck, Jan Křetínskỳ, David Parker,
TimQuatmann, Andrea Turrini, and Zhen Zhang. 2020. OnCorrectness, Precision,
and Performance in Quantitative Verification. In International Symposium on
Leveraging Applications of Formal Methods. Springer, 216–241.

[7] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, Marco Roveri, et al.
1999. NuSMV: A new symbolic model verifier. In CAV, Vol. 99. Citeseer, 495–499.

[8] Mehdi Dastani, Nick AM Tinnemeier, and John-Jules Ch Meyer. 2009. A pro-
gramming language for normative multi-agent systems. In Handbook of Research
on Multi-Agent Systems: semantics and dynamics of organizational models. IGI
Global, 397–417.

[9] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk.
2017. A Storm is coming: A modern probabilistic model checker. In International
Conference on Computer Aided Verification. Springer, 592–600.

[10] Louise ADennis. 2018. TheMCAPL framework including the agent infrastructure
layer and agent java pathfinder. The Journal of Open Source Software (2018).

[11] Louise A Dennis and Berndt Farwer. 2008. Gwendolen: A BDI language for
verifiable agents. In Proceedings of the AISB 2008 Symposium on Logic and the Sim-
ulation of Interaction and Reasoning, Society for the Study of Artificial Intelligence
and Simulation of Behaviour. Citeseer, 16–23.

[12] Louise ADennis andMichael Fisher. 2008. Programming verifiable heterogeneous
agent systems. In International Workshop on Programming Multi-Agent Systems.
Springer, 40–55.

[13] Louise A Dennis and Michael Fisher. 2020. Verifiable self-aware agent-based
autonomous systems. Proc. IEEE 108, 7 (2020), 1011–1026.

[14] Louise A Dennis, Michael Fisher, Nicholas K Lincoln, Alexei Lisitsa, and Sandor M
Veres. 2016. Practical verification of decision-making in agent-based autonomous

systems. Automated Software Engineering 23 (2016), 305–359.
[15] Louise A Dennis, Michael Fisher, and Matt Webster. 2018. Two-stage agent

program verification. Journal of Logic and Computation 28, 3 (2018), 499–523.
[16] Louise A Dennis, Michael Fisher, Matthew P Webster, and Rafael H Bordini. 2012.

Model checking agent programming languages. Automated software engineering
19, 1 (2012), 5–63.

[17] Koen V Hindriks. 2009. Programming rational agents in GOAL. In Multi-agent
programming. Springer, Berlin, Heidelberg, 119–157.

[18] Koen V Hindriks, Frank S De Boer, Wiebe Van der Hoek, and John-Jules Ch
Meyer. 1999. Agent programming in 3APL. Autonomous Agents and Multi-Agent
Systems 2 (1999), 357–401.

[19] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on software
engineering 23, 5 (1997), 279–295.

[20] S.S.T.Q. Jongmans. 2010. Model checking GOAL agents.
[21] Sung-Shik TQ Jongmans, Koen V Hindriks, and M Birna Van Riemsdijk. 2010.

Model checking agent programs by using the program interpreter. In Compu-
tational Logic in Multi-Agent Systems: 11th International Workshop, CLIMA XI,
Lisbon, Portugal, August 16-17, 2010. Proceedings 11. Springer, 219–237.

[22] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.
2019. Formal specification and verification of autonomous robotic systems: A
survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 1–41.

[23] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J Holzmann. 1998.
Implementing statecharts in PROMELA/SPIN. In Proceedings. 2nd IEEE Workshop
on Industrial Strength Formal Specification Techniques. IEEE, 90–101.

[24] M Birna Van Riemsdijk, Frank S De Boer, Mehdi Dastani, and John-Jules ChMeyer.
2006. Prototyping 3APL in the Maude term rewriting language. In Proceedings
of the fifth international joint conference on Autonomous agents and multiagent
systems. 1279–1281.

[25] Gerhard Weiss. 2013. Multiagent Systems. The MIT Press, Cambridge. 462 pages.
[26] Michael Winikoff. 2007. Implementing commitment-based interactions. In Pro-

ceedings of the 6th international joint conference on Autonomous agents and multi-
agent systems. 1–8.

[27] Yi Yang and Tom Holvoet. 2022. Making Model Checking Feasible for GOAL. In
10th International Workshop on Engineering Multi-Agent Systems.

[28] Yi Yang and Tom Holvoet. 2023. vGOAL: a GOAL-based Specification Language
for Safe Autonomous Decision-Making. In Engineering Multi-Agent Systems: 11th
International Workshop, EMAS 2023, London, UK, 29-30 May 2023, Revised Selected
Papers.

[29] Yi Yang and Tom Holvoet. 2023. Making model checking feasible for GOAL.
Annals of Mathematics and Artificial Intelligence (2023). https://doi.org/10.1007/
s10472-023-09898-3

[30] Yi Yang and TomHolvoet. 2023. Safe Autonomous Decision-Making with vGOAL.
InAdvances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive
Mimetics. The PAAMS Collection. Guimarães, Portugal.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2806

https://doi.org/10.1007/s10472-023-09898-3
https://doi.org/10.1007/s10472-023-09898-3

	Abstract
	1 Introduction
	2 CTL Model-Checking Framework
	3 Empirical Analyses
	4 Conclusions and Future Work
	References

