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ABSTRACT
Reinforcement learning agents may fail to learn good policies when

their reward function is too sparse. Auxiliary reward shaping func-

tions can help guide exploration towards the true rewards, but risk

producing sub-optimal policies as agents now target a modified ob-

jective function. Our paper addresses this challenge by introducing

a general framework for incorporating auxiliary reward functions

without introducing a bias in the true objective. Agents train an

ensemble of reward-function-specific policies, sharing experiences

collected with one policy to all other policies in the ensemble. A

top-level control policy then learns to choose the best policy to

maximize the true objective. We show that this scheme does not

affect the convergence properties of the underlying reinforcement

learning algorithm, while avoiding potential biasing of the agent’s

objective. We also adapted our proposed algorithm using off-policy

PPO with MA-Trace correction for state value estimation. To our

knowledge, this is the first work to adapt off-policy PPO in a multi-

agent setting. We also demonstrate that our approach operates

effectively with various assistance reward designs, removing the

need for detailed reward function crafting or fine-tuning.
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1 INTRODUCTION
In reinforcement learning, learning the true objective in a sparse

reward multi-agent setting is challenging, often requiring under-

standing and coordination among agents’ behaviors and actions [4,

7, 15, 17]. To address this, recent studies have introduced auxiliary
reward functions, additional objectives that provide extra informa-

tion to incentivize effective exploration and facilitate the learning

process [7, 8, 15, 18].
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However, introducing auxiliary rewards can also introduce bi-

ases to the system. This paper introduces a novel strategy, Multi-

agent Task Ensemble (MATE), for utilizing auxiliary information

in reinforcement learning without the issues previously mentioned.

MATE constructs an ensemble of auxiliary policies, each optimizing

a distinct auxiliary reward function independently. The algorithm

leverages these dense auxiliary rewards to guide agents in taking

semantically meaningful actions, thus enriching their experience

and enhancing performance with off-policy observations. A high-

level controller policy, trained self-supervised on the true objective,

selects the optimal auxiliary policy at each stage. Agents receive

both assistance and true rewards, transitioning to new states. The

assistance policy enhances learning by offering valuable experi-

ences; if ineffective, the higher-level controller, trained on the true

rewards, steps in to minimize negative impacts. We demonstrate

that our Multi-agent Task Ensemble (MATE) framework converges

to the optimal policy when using an off-policy algorithm like tabu-

lar 𝑄-learning. For on-policy methods such as PPO, we adapt them

to off-policy settings via MA-Trace correction. Empirically, MATE

surpasses baseline methods in environments with sparse rewards

and biased assistance reward designs. MATE efficiently utilizes

any form of assistance reward, leveraging their benefits without

requiring extensive customization or tuning of the reward function.

2 RELATEDWORK
Two main methods for using auxiliary functions are: 1) combining

true and auxiliary objectives into a new reward function [2, 11, 12],

and 2) adjusting the policy gradient based on the similarity between

assistance and true policies [9, 19, 22]. Both approaches modify

the original learning objectives, potentially leading to unintended

behaviors. Additionally, integrating auxiliary objectives requires

careful tuning of parameters and coefficients, presenting signifi-

cant challenges [3, 5]. Transfer Learning trains agents on a source

task with individual rewards, usually in a simpler environment for

efficient learning, then fine-tunes the learned policies on a target

task with sparser team rewards [20, 24, 25]. However, this approach

can suffer from negative transfer if the source task is too dissimilar,

impacting performance negatively on the target task. Imitation

learning focuses on replicating expert actions to achieve similar

outcomes but often lacks exploration and creativity, especially if

expert behaviors do not match the desired objectives [1, 6, 14].

3 METHODOLOGY
Assistance Reward Environment: An assistance-reward Dec-

POMDP augments the usual Dec-POMDP tuple with𝑚 additional
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side reward signals 𝑅𝑎 (𝑠, a) → R. The resulting tuple is (𝑁, 𝑆, {𝐴𝑖 },
𝑃,R, {Ω𝑖 },𝑂,𝛾), where R = 𝑅𝑜 , {𝑅𝑎}. Here, we annotate the true
or ‘real’ (sparse) reward function with 𝑅𝑜 , to distinguish it from

the assistance rewards 𝑅𝑎 for 𝑎 ∈ {1 . . .𝑚}. In this formulation, 𝑁

is the finite set of agents; 𝑆 is the finite set of states; 𝐴𝑖 is the set

of possible actions for agent 𝑖; 𝑃 is the state transition probability

function; 𝑂 is the set of possible observations; {Ω𝑖 } is the set of
observation functions for each agent, where Ω𝑖 : 𝑆 → 𝑂 determines

the observations received by agent 𝑖 based on the current state;

𝛾 ∈ [0, 1] is the discount factor. It is assumed that the assistance

reward signals 𝑅𝑎 are denser than the original reward function,

although they may induce policies that are sub-optimal for the

original reward function. In other words, we do not require that a

policy which is optimal for 𝑅𝑎 would also be (near) optimal for 𝑅𝑜 ,

nor do we place any restrictions on the magnitude of 𝑅𝑎 compared

to 𝑅𝑜 .

Assistance Task Ensemble: We propose to address the chal-

lenge of biased assistance reward by training an Assistance Task

Ensemble. In this paper, we focus on collaborative multi-agent prob-

lems solved via centralized training and decentralized execution.

Each agent policy consists of𝑚+2 sub-policies; a real-reward pol-
icy 𝜋𝑜

𝑖
(𝑎𝑖 | Ω𝑖 (𝑠𝑡 )) targeting𝑅𝑜 , a set of𝑚 executor policies 𝜋𝑚

𝑖
(𝑎𝑖 |

Ω𝑖 (𝑠𝑡 )) each targeting their respective assistance reward 𝑅𝑚 , and

a controller policy 𝜋ctr (𝜋𝑒
𝑖
| Ω𝑖 (𝑠𝑡 )) distributing over the set of

executor policies 𝐸𝑖 = {𝜋𝑜
𝑖
} ∪ {𝜋1

𝑖
, . . . , 𝜋𝑚

𝑖
} in order to maximise

the real reward 𝑅𝑜 . Together, an agent’s ensemble policies form a

control policy 𝜋mate
𝑖

(𝑎𝑖 | Ω𝑖 (𝑠𝑡 )) for the original problem, defined

by:

𝜋MATE

𝑖 (𝑜𝑖 ) =
(
𝑎𝑖 ∼ 𝜋𝑒𝑖 (Ω𝑖 (𝑠𝑡 )) | 𝜋𝑒𝑖 ∼ 𝜋ctr𝑖 (Ω𝑖 (𝑠𝑡 ))

)
, (1)

Intuitively, the action selection process of an agent works as fol-

lows: each time step 𝑡 , the agent observes the current observation

𝑜𝑡 from the environment. Based on this observation, the agent’s

controller policy selects the appropriate executor policy from the

candidate policies 𝜋𝑒 ∈ {𝜋1
𝑖
, . . . , 𝜋𝑚

𝑖
, 𝜋𝑜

𝑖
}, which in turn specifies

the probability of selecting concrete action 𝑎𝑡,𝑖 ∈ 𝐴𝑖 .

Let 𝝅MATE
denote the joint policy for all 𝑁 agents, and define

the objective function as

𝐽 (𝝅MATE) = E
[∑︁∞

𝑡=0
𝛾𝑡 𝑅𝑜

(
𝑠𝑡 , {𝜋mate𝑖 (Ω𝑖 (𝑠𝑡 ))}𝑁𝑖=1

)]
, (2)

where 𝑅𝑜 (𝑠𝑡 , 𝜋mate𝑖
(Ω𝑖 (𝑠𝑡 ))) is the true objective reward at time 𝑡 ,

𝛾 ∈ [0, 1] is the discount factor, and {𝜋mate
𝑖

(Ω𝑖 (𝑠𝑡 ))}𝑁𝑖=1 is the joint
action at time 𝑡 . The learning problem is then to find the optimal

joint policy 𝝅MATE
∗
= argmax𝝅MATE 𝐽 (𝝅MATE).

For the executor sub-policies 𝝅𝒋
, which represent the joint policy

across all agents associated with reward 𝑟 𝑗 , we train each policy

concurrently to maximize its performance with respect to its corre-

sponding reward function. The objective function is:

𝐽 (𝝅𝒋) = E
[∑︁∞

𝑡=0
𝛾𝑡𝑅 𝑗 (𝑠𝑡 , {𝜋MATE

𝑖 (Ω𝑖 (𝑠𝑡 ))}𝑁𝑖=1)
]
. (3)

For MATE integrated with the on-policy Multi-Agent Proximal Pol-

icy Optimization [21, MAPPO], which features centralized training

and decentralized execution, we adjust it to include off-policy ob-

servations from assistance trajectories. This adaptation employs

MA-Trace off-policy corrections [23], akin to how V-Trace is used

for off-policy adaptations in PPO [10].

Figure 1: Aggre 3m (QMIX) Figure 2: Aggre 3m (MAPPO)

4 EXPERIMENTS
Environment Setup and Benchmarks: We evaluate MATE’s

ability to integrate assistance rewards on a modified sparse version

of the Multi-Agent StarCraft environment [16, SMAC]. We created

a version of the ‘3 marines’ map where the true reward is 1 for win

and 0 otherwise. To assist agents in learning the true reward, we add

an assistance reward based only on damage dealt. This assistance

reward is sub-optimal since it places no value on self-preservation.

In SMAC, the opposing team uses scripted strategies to attack the

agent’s units, resulting in a likelihood of winning akin to flipping a

coin under this assistance reward function.

We implemented MATE on top of two base RL algorithms: 1)

QMIX [13], and 2) MAPPO [21] with off-policy corrections. We

compare against baseline strategies Assistance Reward Only (AR)

and Objective Reward Only (OR) which learn from only one of the

reward functions, basic Reward Shaping (RS) and Weighted Reward

Shaping (WRS) that integrate both rewards into one scalar reward

function, Transfer Learning (TL) that switches from assistance to

real reward function mid-way training, and state-of-the-art Indi-

vidual Reward Assisted Team Policy Learning [19, IRAT] that uses

dual policies per agent with discrepancy constraints (on MAPPO).

Results: Results using QMIX (Fig. 1) and MAPPO (Fig. 2) demon-

strate that only the MATE algorithm and IRAT are able to consis-

tently achieve close to 100% win rate in our sparse SMAC environ-

ment. As expected, strategies using the assistance reward directly

(AR, RS, andWRS) are not able to learn a successful policy, showing

the predicted coin-flip win rate effect. Transfer learning, which

shifts focus from initial objectives to actual goals later in training,

can destabilize learning performance, especially with value-based

approaches. Using only the real reward (win rate) is too sparse to

learn a good policy. Both MATE QMIX and MATE MAPPO could

learn a good strategy and can attain optimal outcomes for the envi-

ronment with a biased assistance reward.

5 DISCUSSION AND CONCLUSION
We propose a method to handle sparse reward signals with any

design of assistance reward without introducing bias in the final

policy. By integrating an upper-level controller and implementing

a clear separation between the assistance and the real objective pol-

icy in training, our approach achieves superior performance when

compared to state-of-the-art algorithms across a variety of scenar-

ios. Due to its flexibility and simplicity, our method adapts well to

various problem domains, particularly in environments where the

impact of assistance objectives on learning goals is unclear.
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