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ABSTRACT
Offline reinforcement learning (RL) aims to extract the optimal pol-
icy from static offline datasets but always encounters the notorious
distribution shift problem. In order to address this problem, many
previous offline RL algorithms primarily rely on modifications at
policy evaluation stage. However, the performance gap between
different policy extraction methods is significant even under the
same value function. Thus, to address this issue, we focuses on the
policy extraction stage and introduces a novel policy extraction
method called Contrastive Policy Extraction (CPE), which samples
action pairs at each state and leverages their relative values to
improve the policy. By reformulating the optimal policy parameter-
ization problem as a root-finding problem, CPE enhances the policy
extraction capability and surpasses current prominent extraction
methods in offline RL, such as AWAC and TD3BC. The proposed
CPE is implemented within the iterative actor-critc framework and
it substantially outperforms current state-of-the-art (SOTA) offline
RL algorithms on D4RL benchmarks.
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1 INTRODUCTION
Offline reinforcement learning (RL) algorithms mainly can be di-
vided into two categories: the onestep algorithm and the iterative
algorithm. Both algorithms consist of two stages: policy evaluation
and policy extraction. Recent studies [4, 8] have found that the
choice of a policy extraction method often has a larger impact on
performance than the policy evaluation algorithm. Therefore, we
propose a novel policy extraction method, named Contrastive Pol-
icy Extraction (CPE). It overcomes the drawbacks of the weighted
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behavior cloning method [6, 7, 9]: the constrained action sampling
space and the non-negativity of the gradient, while maintaining
a concise implementation. On the D4RL benchmark, we achieve
SOTA performance acorss multiple datasets.

2 METHOD
2.1 Formulation of the Optimal Policy
Firstly, we theoretically derive the mathematical formulation of
the optimal policy. We define the expected improvement of current
policy 𝜋 over a sampling policy 𝜇 (𝑎 |𝑠) as

𝜂 (𝜋) = 𝐽 (𝜋) − 𝐽 (𝜇) = E𝜏∼𝑝𝜋 (𝜏 )

[ ∞∑︁
𝑡=0

𝛾𝑡𝐴𝜇 (𝑠𝑡 , 𝑎𝑡 )
]
. (1)

Nevertheless, in offline RL, we cannot interact with the environ-
ment to obtain trajectories under 𝜋 . Consequently, we restrict the
distance between the current policy 𝜋 and the behavior policy 𝜇,
then we approximate 𝜂 (𝜋) under state distribution of 𝜇,

𝜂 (𝜋) = E𝑠∼𝑑𝜇 ,𝑎∼𝜋
[
𝐴𝜇 (𝑠, 𝑎)

]
. (2)

Using this objective, we can formulate the following constrained
policy search problem:

argmax
𝜋

∫
𝑠

𝑑𝜇 (𝑠)
∫
𝑎

𝜋 (𝑎 |𝑠)𝐴𝜇 (𝑠, 𝑎)𝑑𝑎𝑑𝑠

s.t. DKL (𝜋 (·|𝑠) | |𝜇 (·|𝑠)) ≤ 𝜖, ∀𝑠
(3)

According to KKT conditions, it is straightforward to derive that
the optimal policy 𝜋∗ has the following form[9],

𝜋∗ (𝑎 |𝑠) = 1
𝑍 (𝑠) 𝜇 (𝑎 |𝑠) exp

(
𝛽𝐴𝜇 (𝑠, 𝑎)

)
, (4)

where

𝑍 (𝑠) =
∫
𝑎

𝜇 (𝑎 |𝑠) exp
(
𝛽𝐴𝜇 (𝑠, 𝑎)

)
𝑑𝑎, (5)

is the partition function.

2.2 Extraction of the Optimal Policy
Since calculating 𝑍 (𝑠) is forbidden, we cannot directly use equation
(4) to calculate 𝜋∗. The AWAC[7] parameterizes the optimal policy
by minimizing the Kullback-Leibler (KL) divergence, but researches
[4, 8] have shown that this approach tends to be overly conservative.
The issue with this conservativeness is that AWAC does not provide
a clear signal to reduce the probability of poor actions. While it
assigns more weight to good actions, it may not effectively suppress
bad ones. This phenomenon has also been observed in the field of
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RLHF, where negative gradients are crucial for policy learning in
an offline setting [10].

CPE overcomes the above shortcoming by contrasting action
pairs. For each state 𝑠 , we sample action pairs from 𝜋 . By comparing
the𝑄𝜋 (𝑠, 𝑎) of the two actions, we explicitly increase the probability
of the good action while decreasing the probability of the bad one.
Comparing action pairs on each state provides explicit signals that
facilitate the learning process of the model. At the same time, we
use behavior cloning (BC) loss to control the overall policy shift,
which ensures a series of steady improvements until convergence.

2.2.1 Objective of CPE. For the sake of clarity in derivation, we
first define

𝑔𝜋,(𝑠,𝑎1,𝑎2 ) :=
𝜋 (𝑎1 |𝑠)
𝜋 (𝑎2 |𝑠)

, (6)

Δ𝑄𝜇,(𝑠,𝑎1,𝑎2 ) := 𝑄
𝜇

𝑠,𝑎1
−𝑄𝜇

𝑠,𝑎2
. (7)

According to equation (4), 𝜋∗ must satisfy to the following relation-
ship:

𝜋∗ (𝑎1 |𝑠)
𝜋∗ (𝑎2 |𝑠)

=
𝜇 (𝑎1 |𝑠)
𝜇 (𝑎2 |𝑠)

exp
(
𝛽

(
𝑄
𝜇

𝑠,𝑎1
−𝑄𝜇

𝑠,𝑎2

))
. (8)

Taking the logarithm of both sides of equation (8) yields the follow-
ing equivalent expression:

log
𝑔𝜋∗,(𝑠,𝑎1,𝑎2 )
𝑔𝜇,(𝑠,𝑎1,𝑎2 )

= 𝛽Δ𝑄𝜇,𝑠,𝑎1,𝑎2 . (9)

Now the key idea is to consider a policy 𝜋 to solve the equation (9).
We can further reformulate the above root-finding problem into an
optimization problem:

𝐿1 (𝜋) = E𝑎1,𝑎2∼𝜇


(
log

𝑔𝜋,(𝑠,𝑎1,𝑎2 )
𝑔𝜇,(𝑠,𝑎1,𝑎2 )

− 𝛽Δ𝑄𝜇,𝑠,𝑎1,𝑎2

)2 . (10)

Then we use a neural network 𝜋𝜃 to parameterize 𝜋 and solve the
optimization problem (10) by gradient descent methods.

In addition, we incorporate a BC loss 𝐿2 (𝜃 ) = −log𝜋 (𝑎 |𝑠;𝜃 ) to
control the overall degree of distribution shift, which keeps the
proposed CPE simple and efficient. Then we get the final objective
of CPE,

𝐿(𝜃 ) = 𝐿1 + 𝜆𝐿2 . (11)
Algorithm 1 instantiates a version of iterative actor-critic frame-

work with CPE (hereinafter referred to as IAC-CPE). The complete
expression of 𝐿(𝜃 ) is,

𝐿(𝜃 ) = E𝑠∼𝐷,(𝑎1,𝑎2 )∼𝜋 ′
𝑘


(
log

𝑔𝜋𝑘 ,(𝑠,𝑎1,𝑎2 )
𝑔𝜋 ′

𝑘
,(𝑠,𝑎1,𝑎2 )

− 𝛽Δ𝑄𝜋 ′
𝑘
,𝑠,𝑎1,𝑎2

)2
− 𝜆E(𝑠,𝑎)∼𝐷 [log(𝑎 |𝑠)] .

(12)

3 EXPERIMENTS
D4RL [3] is a widely used evaluation environment for offline RL,
encompassing a wide range of tasks and datasets. To evaluate the
performance of the proposed CPE, we implement IAC-CPE and con-
duct experiments on both single quality and mixed quality datasets
in D4RL. The results for 10%BC, and DT [1] are based on perfor-
mance summarized in the work by Emmons et al [2]. For other
SOTA algorithms, including AWAC, TD3BC [5] and IQL [6], we

Algorithm 1 Iterative actor-critic framework with CPE (IAC-CPE)

1: for 𝑘 = 1, . . . , 𝐾 do
2: Sample minibatch 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠′)} form 𝐷 .
3: Compute target Q-values

𝑦 = 𝑟 + 𝛾 (min
𝑖=1,2

𝑄𝜙 ′
𝑖
(𝑠′, a′)), 𝑎′ ∼ 𝜋 ′

𝑘
(· | 𝑠′) (13)

4: Update each Q function 𝑄𝜙𝑖
with gradient descent using

∇𝜙𝑖

1
|𝐵 |

∑︁
(𝑠,𝑎,𝑟,𝑠′ ) ∈𝐵

((
𝑄𝜙𝑖
(𝑠, 𝑎) − 𝑦

(
𝑟, 𝑠′

) )2
(14)

5: Sample action pairs {(𝑠, 𝑎1, 𝑎2, 𝑟 )}, 𝑎1, 𝑎2 ∼ 𝜋 ′
𝑘
(· | 𝑠).

6: Update actor network 𝜋𝑘 : 𝜃 ← 𝜃 − 𝛼∇𝜃𝐿(𝜃 ).
7: 𝜋 ′

𝑘
← (1 − 𝜏)𝜋 ′

𝑘
+ 𝜏𝜋𝑘 .

8: For (𝑄𝜙 , 𝑄𝜙 ′ ) ∈ {(𝑄𝜙𝑖
, 𝑄𝜙 ′

𝑖
)}, update target

𝑄𝜙 ′
𝑖
= (1 − 𝜏)𝑄𝜙 ′

𝑖
+ 𝜏𝑄𝜙𝑖

. (15)

9: end for

rerun experiments based on the public repositories [11] and report
results in Table 1. To evaluate the performance fairly, we run IAC-
CPE on 10 evaluation trajectories and 5 random seeds. The results
summarized in Table 1 demonstrate that IAC-CPE significantly
outperforms other algorithms, achieving a lead of over 10%.

Table 1: Evaluation results of IAC-CPE and baselines on the
D4RL dataset. The performance is measured by the normal-
ized scores at the last training iteration. Bold indicates the
best performance in each task. The abbreviations h, hp, and
w correspond to HalfCheetah, Hopper, and Walker2D re-
spectively. The suffixes r, m, mr and me stand for random,
medium, medium-replay, and medium-expert respectively.

Task 10%BC AWAC DT TD3BC IQL IAC-CPE
h-r 2.0 11.3 2.2 11.1 9.5 26.67
hp-r 4.1 15.7 7.5 8.6 7.4 8.12
w-r 1.7 3.3 2.0 0.4 4.0 5.62
h-m 42.5 49.9 42.6 48.3 48.3 57.63
hp-m 56.9 64.5 67.6 63.8 59.5 100.61
w-m 75.0 76.1 74.0 80.5 80.9 79.85
h-mr 40.6 45.7 44.7 36.6 43.7 51.18
hp-mr 75.9 97.6 82.7 55.6 89.4 99.95
w-mr 62.5 74.6 66.6 76.4 80.6 91.35
h-me 92.9 95.8 86.8 88.1 91.2 94.74
hp-me 110.9 107.3 107.6 95.6 105.9 103.02
w-me 109.0 103.6 108.1 110.5 112.1 108.91
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