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ABSTRACT
Current deep reinforcement learning (DRL)-based to optimize tra-
jectories for real-world high-speed rail (HSR) face two issues: 1)
a driver-centric Markov decision process (MDP) with sparse re-
wards and 2) single-trajectory optimization (i.e., single-task), poorly
suited for real-world HSR scenarios that demand rapid adaptation
to changing conditions (i.e., multi-task). To address these issues,
we propose two innovations. First, a trajectory loop optimization
(RTLO)-centric MDP that directly computes rewards from trajec-
tory states, providing dense rewards. Second, a policy deviation
integral meta-reinforcement learning (PDIMRL) method that en-
hances multi-task learning by leveraging HSR inter-task similarities,
while the initial policy of the new task is linearly adjusted by the
policy deviation integral between tasks’ sub-optimal policies. Ex-
periments demonstrate that 1) compared to existing driver-centric
MDP, RTLO is 16.8× faster for single task training, and 2) based
on RTLO-centric MDP, PDIMRL requires 2.3× fewer meta-training
iterations than benchmark meta-RL methods.
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1 INTRODUCTION
The global drive for carbon neutrality has boosted interest in high-
speed rail (HSR) as a sustainable transport option. However, driver-
dependent operations cause energy fluctuations over 10%, under-
mining efficiency[3, 7]. Consequently, rail trajectory optimization
(RTO) has been proposed with the aim of reducing overall operat-
ing costs of HSR by minimizes energy use under fixed timetables
constraint while balancing efficiency, punctuality, and comfort[2].

Deep reinforcement learning (DRL) has applied to RTO[6, 10, 12,
13], but driver-focused models often produce sparse rewards that
slow training[4], and single-task methods struggle with changing
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conditions[11]. We address these challenges by formulating a rail
trajectory loop optimization (RTLO)-centric Markov Decision Pro-
cess (MDP) in which trajectories serve as states, power outputs as
actions, and transitions yield dense rewards. To enable multi-task
adaptation, our policy deviation integral meta-reinforcement learn-
ing (PDIMRL) method leverages similarity between HSR tasks and
adjusts the policy linearly quantifying the discrepancy between the
current and optimal policies of previous iterations, thereby facilitat-
ing faster adaptation with less data than meta-reinforcement learn-
ing (Meta-RL).Experiments on real-world HSR operations show
that our method cuts decision delays from hours to minutes while
maintaining robust policy transfer under dynamic conditions.

2 PROBLEM STATEMENT AND SOLUTIONS
2.1 RTLO Provides Intensive Rewards to Agent
Traditional RTO models driver behavior as an MDP with fixed spa-
tial discretization, but sparse rewards and long decision sequences
in HSR hinder effective exploration. RTLO addresses this by ad-
justing suboptimal trajectories with gradient segment, providing
immediate optimization signals. Rather than controlling every step,
the agent selects key power transition points aligned with gradient
shifts, thereby simplifying the action space and enabling real-time
evaluation of energy cost and punctual performance.

PMP Baseline: An analytical solution 𝑢∗ based on Pontryagin’s
Maximum Principle (PMP)[1] serves as a baseline. Although it
neglects gravitational effects on gradients, it efficiently computes a
near-optimal by partitioning the trajectory into four phases: 1) Full
traction until a transition point 𝜂1, then 2) cruising, constant speed
with balanced forces, ending at 𝜂2, keep 3) coasting, inertia-driven
motion until speed constraints require intervention, ending at 𝜂3,
and 4) full braking to reach the final stop 𝑓 .

The PMP baseline effectively guides the train to near-optimal op-
eration on each gradient segment, allowing gradient-based methods
to converge quickly, significantly lower than naive DRL managing
thousands of fine-grained steps. The agent refines traction strategies
to exploit gravitational potential energy, dramatically narrowing
the agent’s search space.

Action Space: Rather than applying a continuous at every meter,
the agent selects transition points and power levels for each gradient
segment [𝑔𝑖 , 𝑔𝑖+1] in a compact set:

𝐴𝑡 = {𝑝𝑡 , 𝑝 𝑓 , 𝑝𝑏 }, 𝑝𝑡 , 𝑝 𝑓 , 𝑝𝑏 ∈ [0, 1] (1)

where 𝑝𝑡 indicates the relative position within a gradient segment.
𝑝 𝑓 and 𝑝𝑏 denote the power levels (as fractions of maximum trac-
tion) at the front and back of the segment, respectively. The control
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scope of the agent is [𝜂1, 𝜂2]. To maintain a continuous trajectory
by aligning actions with natural gradient transitions, RTLO avoids
unnecessary exploration over a wide range of irrelevant states.

State Space: RTLO uses a state space that fuses local and upcom-
ing track information. The state includes travel time and energy
consumption of previous optimization, current and next gradient
speed, minimum power needed to maintain speed, and upcoming
gradient set of track gradients and segment lengths.

Reward: Dense feedback is provided immediately after each
sub-trajectory rather than waiting until the end of an episode. The
reward balances multiple factors—energy consumption 𝑟𝑒 , punctu-
ality 𝑟𝑝 , and passenger comfort 𝑟 𝑗 (via jerk):

𝑅𝑡 =


−𝑟 𝑗 − (𝑟𝑒𝑟𝑝 )

1
2 , 𝐸 < 0, 𝑃 < 0,

−𝑟 𝑗 +𝐶1 (𝑟𝑒𝑟𝑝 )
1
2 , 𝐸 ≥ 0, 𝑃 ≥ 0,

−𝑟 𝑗 + 𝑠 (𝐸)𝑟𝑒 + 𝑠 (𝑃)𝑟𝑝 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(2)

where 𝑟𝑒 is calculated by 𝐶2 (𝑠 (𝐸) − 1 + 𝐸𝜂1), 𝑟𝑝 is calculated by
𝐶2 (1 − 𝑃𝜂2), and 𝑟 𝑗 is equal to 𝜂3 𝐽 . 𝑠 (·) is a switch function (0 if
input ≥, otherwise 1). Here, 𝜂1, 𝜂2, and 𝜂3 are positive weights for
energy saving 𝐸 relative to PMP baseline, punctuality 𝑃 , and jerk
𝐽 , respectively, while 𝐶1 and 𝐶2 scale the incentives. In order to
prevent daily rewards from diluting settlement rewards, the reward
for non-settlement rounds should be diluted.

2.2 Policy Deviation Integral Guided Meta-RL
By leveraging the linear relationship among suboptimal policies
across different tasks in HSR, we proposes a PDIMRL, a novel first-
order gradient-based meta-RL algorithm, migrates the new task’s
policy parameters closer to previously discovered solutions, and
adapting by initializing the neural network model’s parameters.
The algorithm integrates meta-learning via Reptile[8] and stable
policy updates via PPO[9], with a novel policy deviation integre
(PDI) to migrate policy parameters between tasks.

Initialization: The algorithm begins by initializing meta pa-
rameters 𝜃0 that define a shared policy and task-specific variables,
denoted local gradient 𝜉 (𝑠) and speed constraints 𝑣𝑙𝑖𝑚 (𝑠), while
𝑆𝑝 (𝑇 ) defines the task distribution for scheduling. A suboptimal
baseline 𝑢∗ (𝑇 ) pre-computed via PMP provides an initial for PDI.

Inner Loop: Task-specific DRL, for each task 𝑇𝑖 , task-specific
parameters 𝜙𝑖 are derived from 𝜃𝑖 and refined using several rounds
of PPO updates. Trajectories sampled from the policy 𝜋 (𝑠 |𝑎, 𝜙𝑖 ) are
evaluated against the baseline, and the PPO loss[9] as:

𝐿(𝜙𝑖 ) = E𝑡
[
min

(
𝑟𝑡 (𝜙𝑖 )𝐴𝑡 , clip(𝑟𝑡 (𝜙𝑖 ), 1 − 𝜖𝑐 , 1 + 𝜖𝑐 )𝐴𝑡

)]
(3)

It is minimized via gradient descent to ensure stable updates.
In cases where the current trajectory outperforms the reference,
𝑢∗ (𝑇𝑖 ) is updated, enhancing the fidelity of PDI update.

Outer loop:Meta-learning, during each 𝑇𝑖 , the inner loop per-
forms 𝜈tasks successive updates to refine task-specific parameters.
Upon completion, the outer loop is invoked and employed Rep-
tile to recalibrate the overarching model parameters, facilitating
cross-task generalization, as follows:

𝜃0 ← 𝜃0 + 𝛽𝑟 (𝜙𝑖 − 𝜃0), (4)

where 𝜙𝑖 is the task-specific parameter in 𝑇𝑖 and 𝛽𝑟
𝑖
is the learning

rate for the Reptile update, decayed over time.

After switching to task 𝑇𝑖+1, initializing 𝜃0 to 𝜃𝑖+1, compute the
trajectory 𝑢 using the policy 𝜋 (𝑠𝑡0 |𝑎, 𝜙𝑖 ), where the parameters 𝜙𝑖
are adapted from the previous task 𝑇𝑖 , the initial state is denoted as
𝑠𝑡0 , and using 𝑝 (𝑢, 𝑠) compute the traction power distribution:

E𝑡 (𝑠 )𝑝 = 𝑝 (𝜋 (𝑠𝑡0 |𝑎, 𝜙𝑖 ), 𝑠) (5)

where 𝑝 (𝑢, 𝑠) is the traction power on trajectory 𝑢 at point 𝑠 .
The PDI is computed to quantify the discrepancy 𝜎 between the

current and optimal policies from prior iterations, computed as:

𝜎 =

∫ 𝜂2

𝜂1

E𝑡 (𝑠 )𝑝

𝑝 (𝑢∗
𝑖+1, 𝑠)

𝑑𝑠 (6)

where 𝜂1 and 𝜂2 are the agent’s control scope for task 𝑇𝑖 .
Meta-parameters are adjusted as

𝜃𝑖+1 ← 𝜃𝑖+1 + 𝛽𝑝𝜃𝑖+1 (𝜎 − 1), (7)

where the deviation 𝜎 controls how much the current policy is
adjusted toward the previous one, and the 𝛽𝑝 denotes the learning
rate, decayed over time. This migration rapidly shifts the policy
parameters closer to feasible, high-performing regions.

3 EXPERIMENTAL RESULTS

(a) Calculated cost (b) Boosted similarity (c) Different meta tests

Figure 1: DRTO and PDIMRL Case Study.

We conducted experiments using a CRH380A train—with trac-
tion parameters calibrated on a flat track[5]—on a 46-km mod-
ified segment of the Beijing–Shanghai railway [14]. We evalu-
ated RTLO’s generalization and adaptability on five task durations
(800–1,200 seconds) using PPO, alongside baselines RTO-BC-50m
[14], RTO-ED [15], and RTO-50m [16]. Compared to RTO-BC-50m,
RTLO achieves a 16.8× average speedup across five single-task
training runs. Figure 1b shows that a similarity analysis (averaged
over four seeds) reveals significant behavior alignment improve-
ments post-PDI, particularly when actual and planned execution
times deviate. Figure 1c presents the meta-testing reward profile of
PDIMRL on task-875s after 5 and 10 meta-training iterations, with
error bands indicating stability. Leveraging the RTLO-centric MDP,
PDIMRL outperforms traditional PMPs and requires 2.3× fewer
meta-training iterations than the Reptile baseline.

4 CONCLUSION
We introduce an RTLO-centric MDPwith dense, trajectory-based re-
wards to overcome the sparse-reward issue in driver-centric models.
Our PDIMRL algorithm leverages a linear relationship among sub-
optimal HSR policies to mitigate the “lazy agent” problem, enabling
near-real-time trajectory optimization, dynamic task adaptation,
and efficient HSR operations.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2820



REFERENCES
[1] Amie R Albrecht, Phil G Howlett, Peter J Pudney, and Xuan Vu. 2013. Energy-

efficient train control: From local convexity to global optimization and uniqueness.
Automatica 49, 10 (2013), 3072–3078.

[2] Yuan Cao, Zixuan Zhang, Fanglin Cheng, and Shuai Su. 2022. Trajectory optimiza-
tion for high-speed trains via a mixed integer linear programming approach. IEEE
Transactions on Intelligent Transportation Systems 23, 10 (2022), 17666–17676.

[3] Anne de Bortoli and Adélaïde Féraille. 2024. Banning short-haul flights and
investing in high-speed railways for a sustainable future? Transportation Research
Part D: Transport and Environment 128 (2024), 103987.

[4] Hairong Dong, Lingbin Ning, Min Zhou, Haifeng Song, and Weiqi Bai. 2024.
Deep Reinforcement Learning for Integration of Train Trajectory Optimization
and Timetable Rescheduling Under Disturbances. IEEE Transactions on Neural
Networks and Learning Systems (2024).

[5] Hebi Li. 2021. Research on technology of high-speed railway train group operation
simulation system. Ph.D. Dissertation. China Academy of Railway Sciences.

[6] Jia Liu, Yunduan Cui, Jianghua Duan, Zhengmin Jiang, Zhongming Pan, Kun Xu,
and Huiyun Li. 2024. Reinforcement learning-based high-speed path following
control for autonomous vehicles. IEEE Transactions on Vehicular Technology
(2024).

[7] Hongjie Ma, Hui Xie, Denggao Huang, and Shuo Xiong. 2015. Effects of driving
style on the fuel consumption of city buses under different road conditions and
vehicle masses. Transportation Research Part D: Transport and Environment 41
(2015), 205–216.

[8] A Nichol. 2018. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999 (2018).

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[10] HuiWang, Zhigang Liu, Guiyang Hu, XufanWang, and Zhiwei Han. 2024. Offline
Meta-Reinforcement Learning for Active Pantograph Control in High-Speed
Railways. IEEE Transactions on Industrial Informatics (2024).

[11] Yihui Wang, Songwei Zhu, Shukai Li, Lixing Yang, and Bart De Schutter. 2022. Hi-
erarchical model predictive control for on-line high-speed railway delay manage-
ment and train control in a dynamic operations environment. IEEE Transactions
on Control Systems Technology 30, 6 (2022), 2344–2359.

[12] Jianpeng Xu and Bo Ai. 2021. Experience-driven power allocation using multi-
agent deep reinforcement learning for millimeter-wave high-speed railway sys-
tems. IEEE Transactions on Intelligent Transportation Systems 23, 6 (2021), 5490–
5500.

[13] Haotong Zhang and Gang Xian. 2023. ASTPSI: Allocating Spare Time and
Planning Speed Interval for Intelligent Train Control of Sparse Reward. In Inter-
national Conference on Neural Information Processing. Springer, 65–77.

[14] Haotong Zhang, Kai Xu, Deqing Huang, Deqiang He, Shixun Wu, and Gang
Xian. 2024. Hybrid Decision-Making for Intelligent High-Speed Train Operation:
A Boundary Constraint and Pre-Evaluation Reinforcement Learning Approach.
IEEE Transactions on Intelligent Transportation Systems 25, 11 (2024), 17979–17992.

[15] Liqing Zhang, Mingliang Zhou, Zhenning Li, et al. 2021. An intelligent train
operation method based on event-driven deep reinforcement learning. IEEE
Transactions on Industrial Informatics 18, 10 (2021), 6973–6980.

[16] Zicong Zhao, Jing Xun, Xuguang Wen, and Jianqiu Chen. 2022. Safe reinforce-
ment learning for single train trajectory optimization via shield SARSA. IEEE
Transactions on Intelligent Transportation Systems 24, 1 (2022), 412–428.

Extended Abstract  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2821


	Abstract
	1 Introduction
	2 PROBLEM STATEMENT AND SOLUTIONS
	2.1 RTLO Provides Intensive Rewards to Agent
	2.2 Policy Deviation Integral Guided Meta-RL

	3 EXPERIMENTAL RESULTS
	4 Conclusion
	References



