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ABSTRACT
Recent approaches have utilized the RL via Supervised Learning
(RvS) framework to model offline safe RL. However, these meth-
ods overlook the fundamental differences between reward maxi-
mization and constraint satisfaction, treating them identically with
guidance sampling, and requiring different hyperparameters for
different constraint conditions. To address these limitations, we
propose a novel framework, the Trajectory-Constrained Diffusion
Planner (TCDP), which reframes offline safe RL as a product of tra-
jectory conditional probabilities and energy functions. Additionally,
we introduce Cost-returns-To-Go relabeling with Data Augmen-
tation (CTGDA) and the Quantile Normalization (QN) technique,
enabling the adaptation to various constraints without retraining
or extensive hyperparameter adjustments.
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1 INTRODUCTION
Safe Reinforcement Learning (RL) [3, 5, 11, 22] aims to maximize
the agent’s rewards while adhering to specified constraints. How-
ever, RL is inherently a trial-and-error process that necessitates
continuous interaction with the environment to optimize policies
[19]. Ensuring safety during these interactions is often challenging,
thus highlighting the need for offline safe RL [12, 13, 20].

Recent research has explored RL via Supervised Learning (RvS)
[2] to model offline safe RL. Among the approaches leveraging RvS
modeling, some utilize the return-conditioned sequential modeling
capability of Transformers [14, 21], incorporating Cost Returns as
tokens to adapt policies to different constraints. Others employ
Diffusion techniques to learn trajectory distributions [10, 17], ulti-
mately using classifier guidance to generate trajectories that meet
varying constraints.

However, these methods face the following challenges: (1) They
handle reward maximization and constraint satisfaction similarly.
This implies a lack of distinction between reward maximization
and constraint satisfaction, hindering fine-grained adjustments. (2)
Different constraint conditions necessitate varying hyperparame-
ter adjustments, requiring knowledge of the maximum achievable
return under different constraints or adjusting the degree of reward
and constraint during guidance sampling.

To address these issues, we transform offline safe RL into a new
target distribution: the product of trajectory conditional probabili-
ties and energy functions. This transformation allows us to handle
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Table 1: Difference between methods

Method Objective function Backbone Guidance

TCDP 𝑞(𝜏 |𝑐 ≤ 𝑏) exp(𝛽𝑅(𝜏)) Diffusion classifier guidance for reward maximization
classifier-free guidance for safety constraint satisfaction

TREBI 𝑞(𝜏) exp(𝛽 (𝑅(𝜏) − 𝑛𝐶 (𝜏))) Diffusion classifier guidance
CDD 𝑞(𝜏 |𝑐 = 𝑏, 𝑟 = 𝑟𝑏,max) Diffusion classifier-free guidance
CDT 𝑞(𝜏 |𝑐 = 𝑏, 𝑟 = 𝑟𝑏,max) Decision Transformer /

constraint satisfaction and reward maximization differently. We
then employ diffusion techniques to learn and generate this trajec-
tory distribution, naming our method the Trajectory-Constrained
Diffusion Planner (TCDP).

2 METHODS
Similar to the probabilistic inference model and notation outlined in
[8], we utilize𝑂 = 1 to denote that a trajectory is optimal, and𝑂𝑐 =
1 to indicate that a trajectory satisfies the constraints, specifically
𝐶 (𝜏) ≤ 𝑏. According to [8], we have 𝑝 (𝑂 = 1|𝜏) ∝ exp(𝛽𝑅(𝜏)).
Since whether a trajectory meets constraints does not affect its
optimality, we obtain 𝑝 (𝑂 = 1|𝜏,𝑂𝑐 = 1) ∝ exp(𝛽𝑅(𝜏)). For our
objective 𝑝 (𝜏 |𝑂,𝑂𝑐 ), we derive:

𝑝 (𝜏 |𝑂,𝑂𝑐 ) =
𝑝 (𝜏,𝑂 |𝑂𝑐 )𝑝 (𝑂𝑐 )
𝑝 (𝑂 |𝑂𝑐 )𝑝 (𝑂𝑐 )

=
𝑝 (𝑂 |𝜏,𝑂𝑐 )𝑝 (𝜏 |𝑂𝑐 )

𝑝 (𝑂 |𝑂𝑐 )
∝ 𝑝 (𝑂 |𝜏, )𝑝 (𝜏 |𝑂𝑐 ) ∝ exp(𝛽𝑅(𝜏))𝑝 (𝜏 |𝑂𝑐 ) .

(1)

Given that the posterior of interest is intractable, an auxiliary tra-
jectory distribution 𝑞(𝜏) is introduced to serve as an approximation.
We then utilize the Kullback-Leibler divergence𝐷𝐾𝐿 (𝑞(𝜏) | |𝑝 (𝜏 |𝑂,𝑂𝑐 ))
to derive the expression for 𝑞(𝜏).

In pursuit of the optimal trajectory distribution 𝑞(𝜏), we employ
the Diffusion Planning technique as introduced by [1, 6]. Specifi-
cally, we denote (𝑠𝑡 , 𝑠𝑡+1, · · · , 𝑠𝑡+𝐻−1)𝑘 as the trajectory 𝜏𝑘 , where
𝐻 represents the length of the trajectory, 𝑘 denotes the timestep
in the diffusion forward process, and 𝑡 represents the planning
timestep. We define 𝑞𝑘 (𝜏𝑘 ) and 𝑝𝑘 (𝜏𝑘 ) as the marginal distribution
of the forward diffusion process at time 𝑘 like [15, 23]. Then, we
propose the following assumption that 𝑞𝑘0 (𝜏𝑘 |𝜏0) and 𝑝𝑘0 (𝜏𝑘 |𝜏0)
share the same noise transition distribution. To learn and gener-
ate the final distribution 𝑞𝑘 (𝜏𝑘 ), we use denoising score matching
[18] to train a conditional score network 𝑧𝜃 (𝜏𝑘 , 𝑘) to approximate
∇𝜏𝑘 log𝑞𝑘 (𝜏𝑘 ) as follows:

min
𝜃

∫
𝑞𝑘 (𝜏𝑘 )

[
∥𝑧𝜃 (𝜏𝑘 , 𝑘) + 𝜎𝑘∇𝑥𝑘 log𝑞𝑘 (𝜏𝑘 )∥2

]
d𝜏𝑘 , (2)

In practical implementations, we aim for our learned policies
to adapt to different constraint thresholds 𝑏 without the need for
retraining. This requires replacing 𝑂𝑐 with a general condition 𝑐 .
We introduce Cost-returns-To-Go relabeling with Data Augmen-
tation (CTGDA) and the Quantile Normalization (QN) technique,
enabling the adaptation to various constraints without retraining
or extensive hyperparameter adjustments. CTGDA enhances the
data to generate trajectories that meet different constraints without
being affected by noisy data. QN normalizes the trajectory rewards
under various constraints using quantile normalization to maximize

rewards within the current constraint without being influenced by
data from other constraints. We use DiT [16] as the backbone and
employ classifier-free guidance to sample trajectories that meet
the constraints. The noisy trajectory 𝜏𝑘 and additional conditional
information (noise timesteps 𝑘 and cost returns 𝑐) are fed into the
DiT Block with adaLN-Zero.

In comparison to previous algorithms, our approach uniquely
integrates both classifier guidance and classifier-free guidance con-
cepts, whereas other methods have adopted a singular guidance
mechanism. This dual guidance facilitates more nuanced planning
by considering the distinct characteristics of reward maximization
and safety constraint satisfaction. Table 1 summarizes the differ-
ences between our method and others.

3 EXPERIMENTS
Our algorithm was evaluated using the DSRL benchmark [13],
which encompasses three task sets: Safety-Gymnasium [7], Bullet-
Safety-Gym [4] and MetaDrive [9].

In our results, TCDP outperforms other baselines by maximizing
rewards while satisfying constraints in the majority of tasks, with
a particularly notable improvement in the MetaDrive task. BC-
Safe consistently ensures constraint satisfaction across most tasks
by training exclusively on safe trajectories. However, due to the
presence of suboptimal data in the dataset, BC-Safe fails to achieve
competitive rewards compared to our algorithm. FISOR, being a
hard constraint algorithm, offers superior safety compared to other
soft constraint algorithms. Nevertheless, its overly conservative
policy results in lower rewards. BCQ-Lag, CPQ, and COptiDICE
struggle to balance rewards and constraints effectively, leading
to subpar results. CDT and TREBI, like our algorithm, belong to
the RVS approach and support training under multiple constraint
conditions. However, CDT requires tuning the maximum return
values for each constraint, yet still violates constraints in simpler
tasks (BallRun, BallCircle). TREBI’s reliance on training a classifier
for noisy data leads to inaccurate classifier guidance, resulting in
poor performance in many tasks.

Our algorithm does not require setting different parameters for
different constraints. We only need to determine a single param-
eter 𝛽 , which remains unchanged across different constraints. In
contrast, CDD and CDT require setting 𝑟𝑏,max, necessitating exten-
sive hyperparameter tuning that often fails to yield optimal results.
TREBI, besides sharing the parameter 𝛽 with our algorithm, also
introduces 𝑛, which demands substantial hyperparameter adjust-
ments, resulting in suboptimal performance under most constraints.
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