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ABSTRACT
Improving generalization is a key challenge in Embodied AI, where
obtaining large-scale datasets from diverse scenarios is costly. Vi-
suomotor policies trained with weak augmentations provide only
marginal improvements when applied to new environments. Strong
augmentations, such as random overlay, can disrupt task-relevant
information and degrade performance. To overcome these chal-
lenges, we introduce EAGLE—an Efficient trAining framework
for GeneraLizablE visuomotor policies. EAGLE enhances general-
ization by applying augmentation only to control-related regions
using a self-supervised, control-aware mask. It also boosts training
efficiency and stability by transferring knowledge from an expert
to a student policy, enabling deployment in new environments
without further fine-tuning. Experiments on the DMControl Gen-
eralization Benchmark (DMC-GB) demonstrate the effectiveness of
our approach. Project website at https://vrl-eagle.github.io/
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1 INTRODUCTION
End-to-end visuomotor policies learn low-level controls directly
from high-dimensional visual inputs, yielding promising results in
tasks like robot manipulation [3, 8], autonomous navigation [1],
and locomotion [13, 15]. However, visuomotor policies heavily rely
on visual inputs for decision-making and control, making them
susceptible to performance degradation when faced with changes
in background, distractors, or viewpoints. This deficiency cannot
be mitigated through reinforcement nor imitation learning alone.

One promising technique to reduce the impact of these visual
discrepancies is Data Augmentation [4, 6, 11, 13, 14].Weak augmen-
tations, like random cropping and flipping, consistently enhance
generalization, but with modest improvements. In contrast, strong
augmentations such as random conv [10] and random overlay [7],
boost generalization capabilities through significantly diversifying
the data. Nevertheless, they can indiscriminately distort the entire
observation space, disrupting the control-related environmental
structures and dynamics captured in the data. This often compli-
cates training and destabilizes both learning and testing phases.
While previous research [2, 5] has focused on augmenting specific
areas within the observation space, they are limited to identifying
dynamic objects [12] without considering their task relevance. Re-
cently, vision foundation models like SAM [9] have shown strong
generalization abilities. But they still require fine-tuning or human-
given priors to identify task-relevant regions in the observation
space. Therefore, automatically identifying control-related pixels
for generalizable visuomotor policies still remains challenging.

To improve generalization ability, we propose EAGLE—an ef-
ficient framework for generating generalizable visuomotor poli-
cies. EAGLE consists of two modules: 1) A control-aware augmen-
tation module, which identifies control-related pixels using self-
supervised reconstruction, and 2) A privilege-guided distillation
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module, which extracts control knowledge from an expert agent
trained with deep reinforcement learning. This approach enables
zero-shot deployment in unseen environments, requiring no ad-
ditional labels or reward signals. We evaluate EAGLE’s zero-shot
generalization ability on the DMC-GB [7]. Experimental results
demonstrate that EAGLE significantly improvements the general-
ization ability against challenging visual changes.

2 METHOD
We introduce EAGLE, an efficient training framework for general-
izable visuomotor policies. The overall goal of EAGLE is to learn
visuomotor policies that are invariant and capable of zero-shot
generalization. EAGLE consists of two simultaneously optimized
modules: a control-aware augmentation module and a privilege-
guided distillation module. The former module retrieves temporal
data from the replay buffer and conducts a self-supervised recon-
struction task, accompanied by three auxiliary losses, to identify
control-related pixels. The latter module augments the observation
input and distills knowledge from a pretrained DRL expert (which
processes only environment states) into the visuomotor student
network (which processes only image observations). After training
is completed, the visuomotor policy can be reliable deployed in
complex environments with visual variations, without the need for
fine-tuning or additional supervision.

The control-aware augmentationmodule learns an attention
mask 𝒎 through four networks: an encoder 𝑓𝑐 , an attention block
𝑓𝑎 , a decoder 𝑓𝑑 and a control predictor 𝑓𝑐𝑡𝑙 . Given consecutive
observations 𝒐𝑡 and 𝒐𝑡+1, we first derive the latent features 𝒛𝑡 =

𝑓𝑒 (𝒐𝑡 ) and the attention mask 𝒎𝑡 = 𝑓𝑎 (𝒛𝑡 ) from the source image.
Similarly, we obtain 𝒛𝑡+1 and 𝒎𝑡+1 from the target image. Thus,
𝒛𝑡+1 ⊗ 𝒎𝑡+1 represent the control-related features extracted by the
control-aware masks from target images. Then, following [12], we
synthesize reconstructed latent features �̂�𝑡+1 by:

�̂�𝑡+1 = 𝒛𝑡+1 ⊗ 𝒎𝑡+1 + 𝒛𝑡 ⊗ (1 −𝒎𝑡 ) ⊗ (1 −𝒎𝑡+1),

where ⊗ denotes element-wise multiplication. We decode the target
image by processing �̂�𝑡+1 through the decoder 𝑓𝑑 (·) and computing
the reconstruction loss as L𝑟𝑒𝑐 (𝒐𝑡 , 𝒐𝑡+1) = ∥ 𝑓𝑑 (�̂�𝑡+1) − 𝒐𝑡+1∥22.

Then, we introduce three auxiliary losses to facilitate learn-
ing a clear control-aware mask. The auto-encoder loss L𝑎𝑒 is uti-
lized to capture essential latent information, which is computed
as: L𝑎𝑒 (𝒐𝑡+1) = ∥ 𝑓𝑑 (𝒛𝑡+1) − 𝒐𝑡+1∥22. The control prediction loss
L𝑐𝑡𝑙 is introduced to extract accurate control-related regions, com-
puted as L𝑐𝑡𝑙 (𝒐𝑡 , 𝒐𝑡+1) = ∥ 𝑓𝑐𝑡𝑙 (𝒛𝑡 ⊗ 𝒎𝑡 , 𝒛𝑡+1 ⊗ 𝒎𝑡+1) − 𝑎𝑡 ∥22. And
the sparsity penalty loss L𝑠𝑝𝑠 is added to flexibly control the gen-
erated attention mask as L𝑠𝑝𝑠 = ∥𝑚 𝑗 ∥1. The overall optimiza-
tion objective in control-aware augmentation module is defined
as L𝑎𝑡𝑡 = L𝑟𝑒𝑐 + L𝑎𝑒 + 𝛽L𝑐𝑡𝑙 + 𝜆L𝑠𝑝𝑠 . We directly upsample the
control-aware attention masks 𝒎 to the observation scale and the
augmented image is computed by 𝒐𝑎𝑢𝑔 = 𝒐 ⊗𝒎 +𝑎𝑢𝑔(𝒐) ⊗ (1−𝒎).

The privilege-guided distillation module receives the aug-
mented image and distills a visuomotor policy from a state-based
expert policy 𝜋𝑒 , trained using DrQv2 [13]. The student 𝜋𝜃 is up-
dated through minimizing the following objective:

L(𝜋𝜃 ) = E(𝒐,𝒔 )∼D
[
∥𝜋𝜃 (𝒐𝑎𝑢𝑔) − 𝜋𝑒 (𝒔)∥22

]
,

Settings SVEA TLDA VAI SAM+E SGQN EAGLE

Easy 654 671 738 768 745 833
Hard 435 261 616 548 647 761

Table 1: Generalization Performance on DMC-GB. We report
the average episode returns over 7 tasks with 5 seeds.

Q. Aug. Att. Exp. Train Easy Hard

Q-only ✓ 628.3 318.6 104.7
Q+Aug ✓ ✓ 468.0 430.60 257.3
Q+Mask ✓ ✓ ✓ 702.9 613.0 509.3
E+Aug ✓ ✓ 826.9 718.9 440.5
EAGLE ✓ ✓ ✓ 888.8 833.3 761.3

Table 2: Ablation study of our control-aware attention mod-
ule (Att.) , privilege-guided distillation module (Exp.) and the
random overlay augmentation (Aug.) on DMC-GB.

where 𝒐𝑎𝑢𝑔 combines observation and augmentation images via
𝒎. This distillation approach stabilizes the training process by con-
straining the action space complexity.

3 EXPERIMENTS
Experiment settings.We evaluate EAGLE using the DMC-GB [7],
which tests an agent’s generalization ability from simple to com-
plex environments (Easy and Hard) with background changes. In
Hard settings, the background features real-world videos that differ
significantly from the training environment. Each method under-
goes 500k training iterations, with evaluations based only on visual
inputs. We compare EAGLE to several SOTA algorithms, including
SVEA [6], TLDA [16], VAI [12], SGQN [2] in generalization abil-
ity. Besides, we develope a strong baseline SAM+E that combined
SAM [9] with our privilege expert.

Comparison results. As shown in Tab. 1, EAGLE achieves an
average return of 761 in Hard settings, which is 17.6% higher than
previous state-of-the-art method SGQN. EAGLE overcomes visual
distraction limitations via control-aware masks that preserves task-
critical regions while augmenting all irrelevant areas.

Ablation studies. We investigate the effect of the proposed
control-aware augmentation and privilege-guided distillation mod-
ules on training and generalization performance in Tab. 2. We can
observe that indiscriminate use of strong augmentations degrades
training performance, with Q+Aug achieving 160 lower average
returns than Q-only. Adding the mask or the Expert alone can boost
performance, with Q+Mask and E+Aug improving training results
by 12% and 32%, respectively, and achieving 93% and 126% gains in
Easy settings. In Hard settings, EAGLE achieves an average return
of 761, with a 50% and 73% improvement over Q+Maks and E+Aug,
respectively. This underscores the joint effect of two modules in
enhancing the efficient generalization of visuomotor policies.
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