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ABSTRACT
In decentralized multi-agent deep reinforcement learning (MADRL),
communication can help agents to gain a better understanding of
the environment to better coordinate their behaviors. Neverthe-
less, communication may involve uncertainty, which potentially
introduces variance to the learning of decentralized agents. In this
extended abstract, we report on our research that focuses on a
specific decentralized MADRL setting with communication and a
theoretical analysis to study the variance caused by communication
in policy gradients. We argue for modular techniques to reduce the
variance in policy gradients during training. We show a pseudo
algorithm to illustrate the integration of the modular techniques
into existing decentralized MADRL with communication methods.
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1 INTRODUCTION
Multi-agent Deep Reinforcement Learning (MADRL) has been
widely used to develop cooperative behaviors of agents in partially
observable environments [3, 10, 14]. MADRL agents can commu-
nicate various types of information, including observations, inten-
tions, and experiences, to mitigate the limitations in agent observ-
ability and enhance the coordination of their behaviors [3, 15, 16]. In
recent years, there has been growing research interest in MADRL
that focuses on communication via a vector or range of values
as encoded messages, rather than directly sharing agents’ private
and massive local information, known as MADRL with learning
communication (Comm-MADRL) [16].

Practical considerations such as security and privacy require that
agents act independently and keep control of their individual in-
formation during execution [11]. Among various MADRL settings,
Decentralized Communicating Critics and Decentralized Actors
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(DCCDA) setting [4, 7], which is based on actor-critic methods,
enables communication among critics during training while dis-
abling communication among actors (policies) during both training
and execution. In DCCDA, agents can enjoy the benefit of com-
munication for better coordination during training, while they can
operate fully decentralized (without communication) during the
execution. Despite the promising applications of DCCDA, commu-
nicated messages are often initiated in a stochastic manner [1, 5],
adding uncertainty from the receiver’s perspective. This can result
in high variance in the policy gradient estimator of receiver agents,
leading to low sample efficiency and performance degradation.

In this work, we argue for the need of a theoretical analysis
regarding the variance in policy gradients within Comm-MADRL
under the DCCDA setting. Variance analysis is a vigorous method
that allows us to investigate the variability and dispersion of policy
learning. Previous research has focused on variance analysis in
policy gradients without communication [8, 9], and thus not mea-
suring variance caused by communication. Specifically, Lyu et al.
[8] claim that the variance in policy gradients using a centralized
critic (without communication) can be equal to or higher than the
variance in policy gradients using decentralized critics (without
communication). However, it remains unclear how communication
(in the DCCDA setting) affects the variance in policy gradients.
This extended abstract reports on our variance analysis [17] which
has been used to prove that under both idealistic communication
settings (where agents communicate sound & complete informa-
tion) and non-idealistic communication settings (where sound &
complete information is corrupted with noise), policy gradients un-
der DCCDA have equal or higher variance than under the setting
using a centralized critic.

Our variance analysis hasmotivated us to propose a novelmessage-
dependent baseline technique to reduce the variance caused by
communication, which is inherently different from other baseline
techniques considering states and actions [2, 6, 12, 13]. To improve
the learning of critics, we also propose a regularization technique
to align non-communicating actors and communicating critics. The
proposed baseline and regularization techniques can be applied to
any Comm-MADRL method under DCCDA. We then propose a
pseudo algorithm to show how to extend existing MADRL methods
under the DCCDA setting with our proposed technique.

2 COMPARISON IN MADRL SETTINGS
To position our focused DCCDA setting within MADRL, we illus-
trate various settings, including Centralized Training and Decentral-
ized Execution (CTDE) and Decentralized Training and Decentral-
ized Execution (DTDE), with and without communication, across
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Figure 1: The training and execution phases for CTDE (with-
out communication), CTDE (with communication), DTDE
(without communication), and DCCDA using actor-critic
methods.

training and execution phases in Figure 1. Note that we specifically
focus on actor-critic methods, which align with the DCCDA setting
used in our work. As motivated in the introduction, Settings 2&4
allows agents to communicate during policy execution, which may
not satisfy practical requirements of security and privacy. Also,
Setting 3 is fundamentally different from other settings as com-
munication is not utilized during the training phase. It should be
noted that Setting 1 (CTDE without communication) utilizes global
information in a centralized critic during training, which can be
comparable with a situation where all information is communi-
cated in the training phase. This extended abstract reports on our
research that compares our DCCDA setting with Setting 1 in both
theoretical analysis and experiments.

3 APPROACH
In our theoretical analysis [17], we consider an idealistic communi-
cation setting, where communication induces sound & complete
information from all agents. We also consider a non-idealistic com-
munication setting, where sound & complete information is cor-
rupted with noise, e.g., due to the imperfection of message decoders.
In both settings, we theoretically prove that the variance in DCCDA
policy gradients (where communication is utilized in decentralized
critics) is equal to or higher than CTDE policy gradients (where a
centralized critic is utilized).

Our theoretical variance analysis motivates us to propose a
message-dependent baseline technique 𝑏𝑖 (ℎ𝑖 ,𝑚−𝑖 ) to consider in-
dividual agent’ history ℎ𝑖 and the other agents’ message𝑚−𝑖 . To
achieve minimal variance in the presence of communication, we set
the derivatives of the variance w.r.t. the baseline as 0. By integrating
the optimal baseline to DCCDA policy gradients, we achieve that
the variance with the baseline is reduced compared to the setting
where the baseline is not used. We also notice that communica-
tion is utilized by critics while not by actors, which could cause
misalignment between critics and actors. Specifically, the actors
generate actions that do not consider communication, while the

Algorithm 1 DCCDA methods using message-dependent baseline
1: Initialize the parameters for each agent’s actor and critic. Ini-

tialize the communication model for each agent.
2: for each training iteration do
3: Initialize data buffer 𝐷𝑖 for each agent 𝑖
4: Get initial observations 𝒐0 and set initial history 𝒉0
5: for 𝑡 = 0 to max_steps_per_episode do
6: for each agent 𝑖 do
7: Decide action 𝑎𝑖𝑡 and generate messages𝑚𝑖𝑡
8: Send messages to other agents
9: end for
10: Get new observations 𝒐𝑡+1 and rewards 𝑟𝑡
11: Insert experience into 𝐷𝑖 and update ℎ𝑖𝑡 for each agent
12: end for
13: for each agent 𝑖 do
14: Sample training batches from buffer 𝐷𝑖
15: Compute KL objective L𝐾𝐿 using sampled experience
16: Compute baseline𝑏∗

𝑖
(ℎ𝑖 ,𝑚−𝑖 ) using sampled experience

17: Update policy and communication model
18: end for
19: Update critic for each agent 𝑖
20: end for

corresponding Q-values do consider communication. To improve
the consistency between actors and critics and thereby improve the
learning of critics, we propose a KL objective L𝐾𝐿 to push the pol-
icy distribution of actors close to the policy distribution suggested
by the critics. The optimal message-dependent baseline and the KL
objective jointly constitute our proposed techniques regarding the
variance reduction in policy gradients and the learning of critics.

Algorithm 1 illustrates how communication is integrated into
the MADRL learning process and how our proposed message-
dependent baseline and KL divergence term are used during the
MADRL learning process. Importantly, the exact procedures of gen-
erating messages (line 7), communicating messages (line 8), and
updating the communication model (line 17) are determined by
a DCCDA method. This reflects the adaptability and flexibility of
our technique, making our technique model-agnostic to existing
Comm-MADRL methods under DCCDA.

4 CONCLUSIONS
In this paper, we report on our research investigating the vari-
ance of policy gradients caused by communication in decentralized
MADRL. Specifically, we focus on the Decentralized Communi-
cating Critics and Decentralized Actors (DCCDA) setting, where
communication is allowed only among critics, while actors do not
communicate during training and execution. Our variance analysis
suggests that DCCDA policy gradients have a higher or equal vari-
ance than the policy gradients under CTDE. We further propose a
message-dependent baseline technique for variance reduction in
policy gradients and a KL objective to improve the learning of crit-
ics. In the future, we would like to investigate variance reduction
techniques under various communication settings.
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