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ABSTRACT

For an artificial agent operating long-term under real-world condi-
tions it is not enough to be able to act on orders given by the human.
Even being able to act proactively (anticipatory, self-initiated) does
not suffice. The reason roots in the unrealistic assumption that
the proactive agent from the start and always knows everything it
needs to know and has all the abilities it requires. We argue that the
agent has to be able to proactively learn new knowledge and abilities
according to how the dynamic environment evolves. We identify
challenges and directions towards proactive learning. Our focus is
on formal methods which lend themselves to doing the necessary
reasoning but also give suggestions how these might be integrated
with machine learning. The ideas envisioned in this paper can ad-
vance (M)AS (Multi-Agent Systems) research and have the potential
to enhance collaborations of hybrid human-AI systems.
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1 INTRODUCTION

Research on agent-based systems rests on a solid body of find-
ings [49]. This paper is on agents which are proactive in long-term,

real-world settings. Although being addressed [11, 23, 26, 44], this is
an unsolved problem. Narrowing down our focus, we want to show
the need for agents on an even higher level of autonomy and call
for agents that not only proactively act but proactively learn new
knowledge and new abilities, that is, the agents can self-initiated
decide which new knowledge or ability to learn and when. First
we define the term proactivity as we use it here (similar to Weiss
[49]’s proativeness):
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Proactivity is a comprehensive (human-like), self-initiated
and anticipatory behavior as opposed to a simple reactive
behavior.

Example 1. A domestic robot ProRo self-initiated brings Bob his

medicine so he can take it as ProRo foresees that otherwise Bob would

not have taken it and fallen ill.

This is difficult because ProRo needs to use joint cognitive capa-
bilities to produce proactive behavior: ProRo needs to understand
the current context (Bob does not take his medicine); it needs to
anticipate the future (Bob will be ill because he is not taking his
medicine); it needs tomentally simulate acting alternatives and com-
pute their effects (Bob can take his medicine after ProRo brought
it); it needs to understand what is preferable (Bob not being ill is
preferable); it might also need to use further capabilities such as
epistemic reasoning (Bob does not know he needs to take medicine);
etc. AI researchers [5, 22, 26, 32] have adopted the definition of hu-
man proactivity established in organizational psychology, as being
anticipatory and self-initiated action to impact people and their
environment [21]. It has been found that proactive AI systems are
preferred [5], more easily accepted [38], and trusted [31] by hu-
mans. Several recent works address this question. Some of them
use epistemic reasoning to initiate action based on the human’s
false belief, based on modal logic and an epistemic planner [36, 44];
or based on HTN planning for belief alignment in a human-robot
collaborative task [17, 18, 43]. While epistemic reasoning can be
useful for proactive acting, it is indispensable for proactive learning,
which we here introduce as a new concept 1 and an extension of
proactive acting . We propose the following definition:

Proactive Learning is a comprehensive (human-like),
self-initiated and anticipatory behavior of deciding when
to learn what new knowledge or new ability as opposed to
a simple reactive learning behavior.

Hence, in contrast to classical Machine Learning (ML), where
machines learn an objective given by the human, we advocate for
an agent that itself decides its own learning objectives.

Example 2. Ann’s robot proactively acquires the new ability to

pick up the lunch from a delivery service and bring it to Ann. But

before it needs to learn a new piece of knowledge, the door code, to be
able to re-enter the house afterwards. Bob’s robot proactively learns
the new ability of opening drawers, so it can acquire the knowledge
where the medicine for Bob is.

1In contrast, inmachine learning “proactive learning” (an extension of “active learning”)
is about obtaining class labels for unlabeled data or ranking preferences [14].
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Note that Example 1 highlights many cognitive abilities (context
awareness, anticipation, mental simulation, reasoning on prefer-
ences), which are useful or indeed necessary for agents to be proac-
tive. However, here we will focus on discussing those cognitive
abilities that are most crucial for proactive learning, highlighted in
Example 2 (epistemic reasoning, reasoning on abilities, learning).
While unsolved, long-term proactive acting is being addressed to-
day, whereas poactive learning is a completely unexplored field. It is
required to develop new theories and new computational methods
which enable an agent to reason on what knowledge or ability it
lacks, why it should acquire the new knowledge or new ability,
who knows the knowledge it needs, etc. Work on such highly au-
tonomous agents can advance the field of (M)AS, more precisely,
(M)AS with proactive agents acting long-term in dynamic environ-
ments. It may also facilitate collaboration in human-AI teams. We
state the following challenges that are necessary to be addressed:

I. Develop a theory and computational methods to proactively
decide when to acquire what new knowledge.

II. Develop a theory and computational methods to proactively
decide when to acquire what new ability.

III. Integrate results of I. and II. into one unified theory and
combined computational methods to proactively decide when to
acquire what new knowledge and when to acquire what new ability.

2 PROACTIVE LEARNING

Have we not already “solved” proactive agent behavior? The short
answer: it depends on how you define proactivity (and how you de-
fine “solved”). One might say that the early work on Belief Desire
Intention architectures for modeling rational agents [40] (which
in turn is based on the considerations about intention and inten-
tional action in Bratman [10]) provides means to model proactive
behavior. One might consider Wooldridge and Parsons [51]’s work
presenting BDI-agents that are able to choose whether to delib-
erate (reconsider) or act and higher-level control functions that
can choose which such strategies to apply, as proactive behavior.
However, we have a more general, extrinsic view. Instead of consid-
ering an agent’s intrinsic drives, our understanding of proactivity
is based on the recent works of Grosinger [22] and Lorini [33] who
speak of behavior that is autonomously initiating action taking into

account future state development as well as anticipating potential

consequences of the agent’s actions on (the mind) of other agents and

the environment. Proactive behavior, following the definition above,
requires (at least) reasoning about the current context, making pre-
dictions about future state development, doing mental simulations
of applying actions, doing preference and epistemic reasoning. This
is the understanding of proactivity we propose to extend.

Why proactive learning? Again the short answer first: because
we live in a dynamic world (that is, the real world). A proactive
agent operating long-term in such a world makes autonomous
acting decisions by reasoning on what she currently knows and
what she currently is able to do, among other things. However, it
is an unrealistic assumption that an agent knows all she needs to
know independent of how the world will evolve. It is unrealistic
to assume that she observes and knows all changes in the world.
Concerning the agent’s abilities, we cannot realistically assume that
the agent has knowledge of all actions’ effects and knows which

strategy she should form for some goal. In long-term dynamic
settings, an agent will have to adapt. It might be necessary to gain
new knowledge or update existing knowledge in order to make
informed (acting) decisions. It might be necessary to not only reason
about what the agent can already do, but also about what she can
learn to do and its potential effects, in order to behave intelligently.
It might be necessary that the agent first acquires new knowledge
before she can learn a new ability, or vice versa, it might be that
the agent first needs to learn a new ability in order to retrieve
a new knowledge. This and further intertwined learning of new
knowledge and abilities is addressed by proactive learning.

Why logic? In the following subsections we analyze how to ap-
proach the problem of proactively learning new knowledge and
new abilities. We do this giving several directions, with different
combined methodologies, but focus on logic based aspects. We ar-
gue that it is favorable to model the cognitive abilities needed with
expressive formal languages (see also Lorini [33]). The reasoning
necessary to create proactive learning behavior can conveniently be
based on these formal models. We target learning new knowledge
that is not only data but has meaning and can be attributed to an
agent. The agent should be able to reason on some other agent’s
knowledge and make inferences from that; the agent needs to be
able to reason on her own knowledge and must be able to infer
what knowledge she might be missing and which new knowledge
she needs to learn. Similarly, the proactive learning of new abilities
requires it to be possible for the agent to understand what abili-
ties she already has and which she needs to acquire, when, and
why. Formal methods including formal logic are well suited to do
this deliberation on what to learn and when, which then may use
machine learning to, for example, learn a certain motor skill, in a
neuro-symbolic solution.

3 CHALLENGES AND DIRECTIONS FOR I.− III.
3.1 Proactive Knowledge Learning (I.)
To proactively decide to learn a new piece of knowledge, the agent
needs to understand introspection, This property of knowledge is
expressed in the Introspection Axioms: |= 𝐾𝑖𝜙 ⇒ 𝐾𝑖𝐾𝑖𝜙 , says that,
if agent 𝑖 knows 𝜙 then, agent 𝑖 knows that she knows 𝜙 (positive
introspection); and |= ¬𝐾𝑖𝜙 ⇒ 𝐾𝑖¬𝐾𝑖𝜙 , says that, if agent 𝑖 does
not know 𝜙 , then agent 𝑖 knows that she does not know 𝜙 (negative
introspection) [16]. These axioms enable the agent to understand
(i) that she is lacking knowledge; and (ii) which knowledge she
is lacking. The capability allowing to make such cognitive infer-
ences is called Epistemic Reasoning. It enables the agent to reason
about her own and other agents’ (including humans’) knowledge
and beliefs. It is an important capability for collaborating agents,
hence, also in hybrid human-AI agent teams. Reasoning in gen-
eral about own and other agents’ mental states is referred to as
Theory of Mind (ToM) in psychology [7] and in AI [46]. Work in
AI exists investigating proactive decisions if, what and when to
inform the human about their false beliefs [44]. Beyond that, we
here propose to enable the agent to proactively decide if, what
and when to learn a new knowledge 𝜙 from observation or from
another agent who knows 𝜙 . There are different ways to model
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knowledge. A vast body of work in Epistemic Logic (EL) 2 builds
on the possible worlds semantics which is based mathematically
on Kripke models [16, 27]. These are used for modeling that the
agent believes what she considers possible in all accessible worlds.
Alternatives are belief sets (knowledge bases) and Bayesian mod-
els (see, for example, Gärdenfors and Makinson [20]). Epistemic
states in belief sets are modeled as sets of sentences based on a
language L that the agent believes to be true. Bayesian models
(see also Baker et al. [3]), model an agent’s epistemic state by a
probability function over possible worlds representing degrees of
belief. We need to be able to model change of knowledge states to
achieve a proactively learning agent. In belief sets this is done by
the operations expansion (accept new information 𝜙), contraction
(reject existing information 𝜙), and revision (accept 𝜙 if not existing,
reject 𝜙 if existing). For Bayesian models, update of belief states is
done by Bayesian inference. Furthermore, the dynamic version of
EL, Dynamic Epistemic Logic (DEL) [47] can be used. It allows to up-
date both the ontic and the epistemic aspects of the state (epistemic

modelM) with an action (event model E) through a product update
to result in a new epistemic modelM′, denotedM⊗E =M′.

Epistemic reasoning can be combined with reasoning on causal-
ity to find out what new knowledge to learn. Consider the following
variant of Example 1.

Example 3. ProRo knows the following causal chain concerning

Bob: Not knows medicine =⇒ Not takes medicine =⇒ Sick. Based on
this intertwined causal and epistemic reasoning, ProRo proactively

decides to learn the new knowledge of the location of the medicine

and bring it to Bob so he can take it.

The combination of causal and epistemic reasoning is under-
investigated, but may inform proactive learning. Barbero et al. [6]
stress the importance of causal reasoning research in AI. Their ap-
proach is based on a standard causal model [24] with exogenous
(causally independent) and endogenous (causally dependent) vari-
ables, as well as a structural function which describes the relation
between variables. They make this model epistemic by allowing
several (instead of only one) possible valuations of variables. An
alternative approach is proposed by Ding et al. [13], which is a
fusion of causal models and Kripke models, thus using possible
world semantics, which they call Causal Kripke Models. Pearl and
Mackenzie [39] propose (Structural) Causal Models, SCMs, which
can combine data and causal knowledge. Madumal et al. [34] pro-
pose action influence models, which are SCMs that are learned by
reinforcement learning.

After discussing epistemic and causal reasoning for proactive
learning, we have come to the question of how to do learning itself.
Baltag et al. [4] propose Dynamic Logic for Learning Theory (DLLT).
The agent can use their introduced modality [𝑜]𝜙 (’after the evi-
dence 𝑜 is observed, 𝜙 will hold’) and the learning operator 𝐿(®𝑜) to
map every evidence (sequence of observations ®𝑜) to a conjecture (the
agent’s strongest belief after observing ®𝑜). Works like Charrier et al.
[12] can serve as a basis for learning from announcements, denoted
!𝜙 . One may consider to employ Large Language Models (LLMs)

2Epistemic logic is concerned with reasoning about knowledge. Doxastic logic is
concerned with reasoning about belief. As is common, we here use the term epistemic
logic to denote both, reasoning about knowledge and belief.

for doing ToM tasks. Kosinski [30] present a study of GPT43 which
successfully passes 95% of widely used false-belief tests4.However,
our position is that we need other methods (possibly combined
with data-based methods such as the above) to approach the kind
of proactive learning we suggest in this paper. We envision agents
to be able to reason about other agents’ beliefs, introspect their
own knowledge and understand which knowledge they are lacking,
track their own and other agents’ beliefs changing over time and
use all this information for their proactive learning decisions — a
kind of reasoning for which formal methods are suitable.

3.2 Proactive Ability Learning (II.)
By ability we mean abstract skill. By learning abilities we mean
acquiring in a systematic way new high-level behaviors, that the
agent can reason on in an abstract way. High-level behaviors can be
comprised of low-level actions, which might be learned by classical
reinforcement learning in order to, for example, gain the motor
skills to play table tennis [37]. Having an ability or strategy can be
understood as knowing how to achieve a goal through applying
actions. The early work on Propositional Dynamic Logic (PDL) [19]
can model that [𝑎]𝑝 , which says that “when program 𝑎 terminates,
assertion 𝑝 holds”. To reason on which ability the agent is lack-
ing (does not know how to reach the goal), the agent also needs
to do epistemic reasoning. Alternating-time Temporal Epistemic
Logic (ATEL) [45] (based on ATL [1]) can model epistemic notions
and ability notions together. Using the modality ⟨⟨⟩⟩, which means
“bringing about”, ATEL can, for example, express K𝑎 ⟨⟨𝑎⟩⟩^𝜙 , which
means agent 𝑎 knows that she can ensure/achieve that eventually 𝜙
holds. Constructive Strategic Logic (CSL) [28] goes beyond AT(E)L.
It differentiates between knowing that (operator 𝐾) and knowing
how (operator K), meaning, knowing which strategy is available to
bring about 𝜙 . For example, 𝐾𝑎K𝑏 ⟨⟨𝑏⟩⟩win, says that agent 𝑎 knows
that agent 𝑏 knows how (can identify a strategy) to win. Wang [48]
introduces a logic able to express “knowing how to achieve the goal
𝜙 , given𝜓 ”, which can also be understood as “having the ability to
achieve goal 𝜙 , given𝜓”, formally, Kℎ(𝜓, 𝜙). Areces et al. [2] use
the knowing-how operator to express that the agent knows how
to achieve 𝜙 given 𝜓 if there is a plan that when executed in any
state where𝜓 holds will end in states satisfying 𝜙 . Hammond et al.
[25] present a game-theoretic approach for reasoning about causal
relationships and estimating effects of strategic behavior. Motamed
et al. [35] propose a probabilistic temporal logic which can express
^𝑛⊲⊳𝑟Φ, “the agent can act in the next 𝑛 steps such that Φ will hold
with probability ⊲⊳ 𝑟”, where ⊲⊳ ∈ {<,=, >}.

It is conceivable that formal logic approaches for reasoning on
abilities as the ones above can be combined in a neuro-symbolic
approach to enable proactive learning. First the formal, high-level
reasoner proactively infers (i.) if to learn a new ability, (ii.) what
new ability should be learned and (iii.) when. After a high level
decision is made to learn a new ability, machine learning such as
reinforcement learning can be employed to learn (iv.) how to do
the new ability. Qualitative planning is another potential way to go.
Based on logic it allows the agent to formulate and reason explicitly

3GPT4 - Generative Pre-trained Transformer 4, https://openai.com/product/gpt-4
4False belief tasks test an agent’s ability to understand another agent’s beliefs, whether
they are false and how this other agent will react on the basis of these beliefs [50].
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on knowledge about action effects. The agent can learn by streams
of observations of action effects from actions executed by herself or
by other agents, as well as by history [8, 9] or announcement [12].
Epistemic planning (EP) finds plans considering both ontic and
epistemic states and ontic and epistemic actions. EP might be used
to find generic epistemic policies of whose actions some might
have to be learned by the agent to achieve her goal. Again, in a
neuro-symbolic approach, qualitative learning can be used to reason
on which actions and their effects the agent knows and which she
needs to know for conducting an epistemic policy; machine learning
might be used to learn how to execute actions in the policy.

3.3 Unified Theory of Proactive Learning (III.)
Learning new knowledge (I.) and learning new abilities (II.) can be
combined in a unified theory.

Learn new knowledge −→ Learn new abilities. The agent
proactively decides to acquire a new ability 𝜎 . To learn 𝜎 , the agent
not only needs to learn action models’ effects, but she also needs
to learn new knowledge 𝜙 . Hence, the agent learns knowledge 𝜙
that is necessary for acquiring ability 𝜎 . She learns 𝜙 , for example,
from observation streams ®𝑜 and from announcements !𝜙 . When
factual and action knowledge are retrieved, the agent can finally
use the previously computed epistemic policy which represents
ability 𝜎 (all actions are now known to the agent). Example: ProRo
learns the ability to bring the lunch box to Ann. For this, ProRo
first needs to acquire the knowledge of what the door code is.

Learn new knowledge ←− Learn new abilities. The agent
proactively decides to acquire a new piece of knowledge 𝜙 . It can
be retrieved by an announcement !𝜙 or by observation stream ®𝑜
that shows 𝜙 . But in order to acquire 𝜙 , the agent needs to learn
the ability 𝜎 . EP can find an epistemic policy for the epistemic goal
𝜙 ; ability reasoning and qualitative learning may find which of
the action models of the policy the agent does not know and may
need to acquire, for example, from observation streams ®𝑜 or from
announcements !𝛼 telling the effects of action models. Example:
ProRo knows that Bob’s medicine is in either drawer A, B or C.
ProRo needs to learn the ability to open drawers to gain the new
knowledge in which of the drawers Bob’s medicine is.

Chains of intermixed learning of new knowledge and learning
of new abilities are conceivable (learn new knowledge to learn new
abilities so that yet another new knowledge can be learned, etc.).

Note on scalability: The methods suggested here are expressive
but costly. One proposal to address this is by Shvo et al. [44] who use
a KD45 logic and the epistemic planner RP-MEP [36] for proactive
robot assistance, reasoning about human belief. RP-MEP can reason
over complex action theories in large state spaces by limiting belief
nesting depth and permitted formulas, which increases efficiency.
Works like these are promising proposals for scalability in the field.

3.4 Ethical Challenges in Proactive Learning

An agent that proactively can decide what new knowledge or ability
to learn has very high autonomy. This can be a significant benefit
as it can facilitate hybrid human-agent teaming in long-term real
world settings and makes collaboration with artificial agents more
natural for humans [29]. However, it is not obvious how the benefit
of such agents should be measured. How should we compare the

behavior of agent 1 that chooses to learn ability 𝜎1 and knowledge
𝜙1 in a certain situation with the behavior of another agent 2which
instead decides to learn ability 𝜎2 and knowledge 𝜙2. Investigating
this question and developing benchmarks for proactively acting
and proactively learning agents is a topic of future research.

High agent autonomy is not only beneficial. It might pose eth-
ical challenges such as Value Alignment (VA) [41]. VA requires
autonomous agents to align their goals and behaviors with human
values5. When values are not aligned, the agent “single-minded”
optimizes getting maximal rewards, but is not doing what humans
actually want it to do (“wire-heading”). For example, ProRo with
misaligned values hides the medicine from Bob so he cannot mis-
place it. While achieving the positive effect that Bob never misses
to take his medicine (ProRo always brings it to him), the behavior
is hurting Bob’s human dignity. Sanneman and Shah [42] suggest
Transparent VA, using human feedback about the value learning
process to verify alignment or identify and amend gaps in agent
models. Russell [41] proposes endowing agents with uncertainty
about humans’ preferences. Proactively learning agents might take
into account this uncertainty, so they are “open” to collect additional
information reassuring values are aligned with the human.

Trustworthiness: The EU High-level Expert Group on Artificial
Intelligence drafts ethics guidelines for trustworthy AI [15], stating
that human autonomy is not to be undermined and humans should
have the ability to over-ride decisions made by an AI system. Trans-
parency is particularly important for highly autonomous systems as
suggested here. Knowledge-based methods are conducive to trans-
parency and trustworthiness through human-readable white-box
models. Certain measures should be taken for trustworthiness and
transparency in neuro-symbolic approaches, where, for instance,
knowledge-based methods compute which new ability should be
learned; reinforcement learning is used for learning to do the ability.

4 CONCLUSION

In the field of long-term real world agent autonomy, a large part
of the research has addressed the question how to act, given a
goal by the human. Another part of the field investigates what
the agent should do and when proactively, meaning, self-initiated
and anticipatory. We argue for the need of yet higher autonomy,
which is beyond proactively acting agents. We call for proactively
learning agents. We propose a new research direction to investigate
how the AI agent proactively can decide what new knowledge and
what new ability to learn and when. This comprises enabling the
agent to reason about her own and others’ knowledge, to reason
about which ability she lacks and which ability she needs, to reason
about which knowledge to learn for learning a new ability, and
which ability to learn for learning a new knowledge. We point
out challenges of this new research area and suggest directions to
approach them, focusing on knowledge/logic-based methods. The
significance of this new research direction roots in that humans
expect proactivity from their collaborators, and it can therefore
contribute to facilitate collaboration in hybrid human-AI teams.
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