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ABSTRACT
Market-based agents refer to reinforcement learning agents which

determine their actions based on an internal market of sub-agents.

We introduce a new type of market-based algorithm where the

state itself is factored into several axes called “goods”, which allows

for greater specialization and parallelism than existing market-

based RL algorithms. Furthermore, we argue that market-based

algorithms have the potential to address many current challenges

in AI, such as search, dynamic scaling and complete feedback, and
demonstrate that they may be seen to generalize neural networks;

finally, we list some novel ways that market algorithms may be

applied in conjunction with Large Language Models for immediate

practical applicability.
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1 INTRODUCTION
Before neural networks won the mandate of heaven, an AI research

paradigm that had shown considerable promise was that of market-
based architectures, i.e. AI agents that determine their output based

on some internal market-based mechanism [3, 18].

There are general intuitive arguments that motivate such a line

of research. Philosophers and psychologists have long pondered

multi-agent models of the mind [23]; moreover, one may imagine

that “any” machine learning task could in principle be solved by

a market of agents solving sub-tasks with their individual reward

set by the sale value of their output. There is work suggesting that

markets can capture some notion of bounded rationality, e.g. the
Boundedly Rational Inductive Agent (BRIA) [25] and Algorithmic
Bayesian Epistemology [24]. In some sense, markets “aggregate” the

intelligence or capacities of their individual participants.
1

1
See e.g. Hayek on the role of markets in aggregating information [32] – or the famous

parable “I, Pencil” [19]: “... no one person, no matter how smart, could create from

scratch a small, everyday pencil [yet the market makes over a billion of them each

year] ...”. There is also some empirical work on emergent intelligent behaviour in

markets comprised of zero-intelligence traders [11, 17, 31]
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“Market-based architectures” can be made concrete in the case

of reinforcement learning (RL), where the majority of work in this

area lies (see 1.1 for a brief summary). For example in the Hayek
machine [2] and its derivatives, the setting is a Markov Decision

Problem (MDP) and there is a single resource, the “right to act and

collect reward”, that is traded between sub-agents. At each time

step, this resource is sold to the highest-bidding sub-agent, who

performs some action that modifies the state and collects reward.

In this paper, we argue that market-based agents represent an

underexplored and promising niche, especially in context of recent

advancements in language models (LLMs), and have potential to

address a range of present challenges in contemporary AI research.

Specifically, we make the following claims and contributions:

Theoretical framework formarket-based agents.Wepresent

two general frameworks for market-based RL agents: (1) the “deep

market” (Def 2.1), where a single good, the state, is passed through a
sequence of transacting agents, and (2) the “wide market” (Def 2.2),

in which the state space itself is partitioned into factors called goods.
The deep framework is not much of a departure from existing al-

gorithms, and can be applied to any Partially Observed Markov

Decision Process (POMDP); to our knowledge the wide framework

is original to us, and is a generalization of the deep framework

which better mirrors the success of real-world markets allowing for

greater specialization and parallelism. A Python library for creating

market-based algorithms will be released upon publication.

Markets, neural networks and backpropagation.We demon-

strate that these market-based agents can in principle be applied

even to basic supervised learning tasks such as classification, and

that neural networks (though not backpropagation or gradient

descent) emerge as a special case of them. Furthermore we general-

ize the result in [33] to wide markets, demonstrating a suggestive

relationship between backpropagation and markets at equilibrium.

Search, complete feedback and alignment. We claim that

markets can address several present problems in AI research, specif-

ically: they are a natural framework for search, their scale or depth
can be dynamic rather than fixed, and they allow complete feedback
[8], a property widely regarded as valuable in AI alignment.

Markets and LLMs.We present novel ways in which market

algorithms might be applied in conjunction with LLMs to address

their limitations: they can be used for developing reasoning models

like o1, and LLMs can facilitate “information markets” that can in

turn improve human feedback mechanisms in AI training.

1.1 Related Work
Market-based RL. The majority of early work in this area has fo-

cused on market-based reinforcement learning (RL) algorithms. The

pioneering work in this domain consists of Holland’s Learning Clas-
sifier Systems or “bucket brigade” [15] in rule-based systems, where
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condition-action agents (“classifiers”) bid to post messages (which

can be actions described in some language) onto a global message

board. Improvements to this paradigm were made by Schmidhuber

[29, 30] who allowed agents to determine their own bids and im-

posed credit conservation, and by Baum [2] who further strictly

enforced property rights, resulting in a much more familiar set-up

called the “Hayek Machine”. The Hayek machine, which can be

applied to any Markov Decision Process (MDP), was subsequently

extended to POMDPs by [18] by adding external memory, and more

recently [3] modified the framework to use Vickrey auctions and

prove that a Nash equilibrium of the market produces a globally

optimal policy.

Bounded rationality and markets. Other, more recent work

in this area includes: Logical Induction [9], an algorithm that as-

signs probabilities to mathematical sentences based on their prices

in a prediction market that (roughly speaking) pays off when a

sentence is proven; and the Boundedly Rational Inductive Agent
(BRIA) [25] which solves finite decision problems by assigning it

to the highest-bidding trader, similar to in market-based RL. The

key insight of these works is that markets are useful for modeling

boundedly rational agents. The main results of each work – the fact

that the logical inductor cannot by dominated by any polynomial-

time trader, and the “boundedly rational inductive agent criterion”

in the latter paper – are specific and precise formulations of the

Efficient Market Hypothesis [24].

Markets and neural networks.A specific equivalence between

classifier systems and neural networks has been studied in the Neu-
ral bucket brigade [7, 30], although this does not consider backpropa-
gation. A suggestive analogy betweenmarkets and backpropagation

is discussed in [33], though only for the case of a strictly sequential,

unit-width market like that in Def 2.1. In our work we make this

more precise and generalize it to 2.2

2 MARKET ALGORITHMS
Setting (POMDP). We assume a ususal POMDP setting, with a

state space S, action space X, transition probability P(𝑠′ | 𝑠, 𝑥)
(which allows us to treat actions as stochastic functions i.e. 𝑥 (𝑠) ∼
P(𝑠′ | 𝑠, 𝑥)), reward functionR(𝑠, 𝑥, 𝑠′), and observation distribution
𝜔 (𝑠) ∼ O(𝜔 | 𝑠) over a set of observations Ω. A policy is a map

𝛼 : Ω → X, and the process proceeds as per usual.

Mirroring [18] and similar to Belief-MDP formulations, we can

extend the state and message spaces by taking the cartesian product

space with a message space str which is always preserved by 𝜔 ;

this gives the policy a “memory”, or in terms of markets, creates

informational goods.

The first algorithmwe describe is Def 2.1: here, agents bid at each

time step for the right to act and collect reward, and the highest-

bidding agent is chosen to act. As in previous work, e.g. [2, 3],

these agents are not utility-maximizers but programs out of a pos-

sibly infinite collection of agents A (which we leave abstract). The

parameters of this algorithm are the wealths of each agent 𝑤 [𝛼].
trained by the training loop Capitalism: at each step, the agent

pays its bid to the previous agent, collects the reward generated

by its actions and receives the bid of the next. This means that at

equilibrium, each agent is incentivized to bid the value function,

and perform the action with maximum Q-value.

Algorithm 1 Deep market

procedure Market ⊲ Forward pass

parameters: 𝑤 [𝛼] ∈ R ⊲ wealths of each 𝛼 ∈ A
input: 𝜔 ∈ Ω
𝑏 [𝛼] ← min(𝛼𝑏 (𝜔),𝑤 [𝛼]) for 𝛼 ∈ A ⊲ Cap bids by wealth

𝛼∗ ← argmax𝑏 [𝛼] ⊲ Choose winning agent

𝑥 ← 𝛼∗ (𝜔) ⊲ Determine action

return 𝑥 , 𝛼∗

end procedure
procedure Capitalism ⊲ Training loop

Initialize agent wealths𝑤 [𝛼] ∈ R for each 𝛼 ∈ A
Initialize original owner of the world 𝛼∗

Initialize state 𝑠 ∈ S
while 𝑡 ∈ N do

𝜔 ← 𝜔 (𝑠) ⊲ Generate observation

𝛼∗
prev
← 𝛼∗

𝑥, 𝛼∗ ← Market(𝜔)
𝑤 [𝛼∗] ← 𝑤 [𝛼∗] − 𝑏 [𝛼∗] ⊲ Pay bid

𝑤 [𝛼∗
prev
] ← 𝑤 [𝛼∗

prev
] + 𝑏 [𝛼∗] ⊲ to previous owner

𝑠prev ← 𝑠

𝑠 ← 𝑥 (𝑠) ⊲ Transition state

𝑤 [𝛼∗] ← 𝑤 [𝛼∗] + R(𝑠prev, 𝑥, 𝑠) ⊲ add reward to wealth

end while
end procedure

Definition 2.1 (Deep market). Assume a POMDP setup, and let

A be a collection of “agents”, which are (stochastic) maps 𝛼 : Ω →
X × R. The first component 𝛼 : Ω → X of an agent is called its

action, the second component 𝛼𝑏 : Ω → R is called its bid. The
market algorithm then proceeds as in Algorithm 1.

2

Some details have been ignored.A will usually be infinite and so

tables like𝑤 [𝛼] cannot simply be indexed on it: instead,A must be

countably enumerated and added to the economy one-by-one in the

training loop with each agent being endowed with some allowance.

To prevent holdout problems, one may impose a small fixed “rent”

on 𝛼∗ at each training step i.e. 𝑤 [𝛼∗] ← (1 − 𝜀)𝑤 [𝛼∗]. A simple

first-price auction is shown for simplicity, and may be replaced

with a Vickrey auction in line with [3]. One may also replace the

explicit reward function R with a class of “consumers” C who place

bids upon desirable states, which may be a useful formulation for

reinforcement learning from diverse human feedback
3
.

Definition 2.1, which subsumes existing market-based RL, al-

ready illustrates one of the key defining features of markets rec-

ognizable to any student of economics: markets serve not only to

select (via market competition) the best process to achieve a task,

but also to distribute a complex task among agents which are in-

dividually much too weak or uninformed to complete the entire

task. This means that the collection of actions A can be a class

of “simple” agents, so that enumerating A can quickly find many

valuable agents.

2
For training, this may be executed in multiple episodes with different initial state 𝑠 ,

either with finite episodes or in parallel (with shared wealth variables across running

instances).

3
see [6, 10] for a primer on this area
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Specifically, Def 2.1 exploits modularity of action, where the

state can be transformed one step at a time. There is however

another form of modularity, missed by all existing market-based RL

algorithms, which we may call modularity of state, and is crucial to

the success of real-world markets: here, agents are not constantly

transacting the whole “state of the world”: instead, the state of

the world is decomposed into several components, called goods4:
S = S1 ⊕ · · · ⊕ S𝑛 . For instance, 𝑠1 ∈ S1 might represent the

quantity of iron ore in the world. Agents bid for small quantities of

each good; no agent owns the whole world, and does not have to

bother performing a valuation of the whole world. The “state of the

world” may be recovered as the vector sum of all agents’ holdings.

At least two new difficulties are introduced by considering mar-

kets of multiple divisible goods:

General equilibrium theory. Allocating goods is no longer as

easy as an auction, because agents might have joint demand sched-

ules for goods that are complementary or substitute to each other.

The problem of matching buyers and sellers in this setting is the

domain of “General Equilibrium Theory” in economics, where there

are models such as the Fisher market and the Arrow-Debreu ex-

change market [1, 20]. Computing the equilibrium in these models

is non-trivial and often intractable [4, 5]

Property rights in POMDPs. A more subtle difficulty lies in

the fact that we want to divide the state 𝑠 ∈ S, which is not directly

observed, among bidding agents (so that each of their actions only

transform their respective portions of the state, i.e. their properties),

but the agents only submit demand schedules over 𝜔 ∈ Ω. It is not
obvious how to map a decomposition of a vector 𝜔 (𝑠) back onto 𝑠 .

Both of these have to do with specific questions of how buy-

ers and sellers meet and match in real markets, i.e. having to do

with institutions such as property rights and mechanism design.

These questions are out of scope for us, and we abstract them away

by postulating some effective equilibrium computation algorithm
5

Equ(𝜔, 𝛼1
𝑏
, . . . 𝛼𝑚

𝑏
) = (p, 𝜔 [𝛼1], . . . 𝜔 [𝛼𝑚]) i.e. which takes the to-

tal perceived quantity of goods in the world Ω and each agent’s

valuation function 𝛼𝑖
𝑏
: Ω → R, and returns a price vector p ∈ Ω

and allocations to each agent 𝜔 [𝛼𝑖 ] ∈ Ω, such that (in line with a

Walrasian equilibrium with quasilinear utilities [22]):

• 𝜔 =
∑
𝜔 [𝛼𝑖 ] (the full quantity is allocated)

• p · 𝜔 [𝛼𝑖 ] ≤ 𝛼𝑖
𝑏
(𝜔 [𝛼𝑖 ]) for all 𝛼𝑖 (no agent pays for what it

doesn’t value), and

• 𝜔 [𝛼𝑖 ] = argmax𝜔 ′∈Ω 𝛼𝑖
𝑏
(𝜔 ′) − p · 𝜔 ′ for all 𝛼𝑖 (each agent

gets a utility-maximizing bundle at the given price).

Definition 2.2 (Wide market). Everything from the POMDP setup

and the agent type in Def 2.1 remains the same; except that S and

Ω are now vector spaces with each vector called a goods bundle.
Further, we have action spaces X𝜔 indexed by 𝜔 ∈ Ω such that

(1) for any 𝑥 ∈ X𝜔 , there is an “exercised property right” denoted

𝑠𝑥 (𝜔) ∈ S such that 𝜔 (𝑠𝑥 (𝜔)) = 𝜔 and 𝑥 (𝑠) = 𝑥 (𝑠𝑥 (𝜔)) + (𝑠 −
𝑠𝑥 (𝜔)) (i.e. each agent’s actions transform only the goods they own)

and (2) there is an injective map 𝜉 : X𝜔1
× X𝜔2

→ X𝜔1+𝜔2
such

that 𝜉 (𝑥𝜔1
, 𝑥𝜔2
) = 𝑥𝜔1

(𝑠𝑥𝜔
1

(𝜔1)) +𝑥𝜔2
(𝑠𝑥𝜔

2

(𝜔2)) + (𝑠−𝑠𝑥𝜔
1

(𝜔1) −

4⊕ denotes the direct sum of vector spaces, which is a Cartesian product equipped

with a pointwise vector addition operator

5
e.g. there are results demonstrating that simple tâtonnement converges to aWalrasian

equilibrium when the agents’ valuations are gross subtitutes [13].

Algorithm 2 Wide market

procedure Market ⊲ Forward pass

parameters: 𝑤 [𝛼] ∈ R ⊲ wealths of each 𝛼 ∈ A
input: 𝜔 ∈ Ω
⊲ Cap bids by budget

𝑏 [𝛼] ← 𝜆𝑠 : min(𝛼𝑏 (𝑠),𝑤 [𝛼]) for all 𝛼 ∈ A
⊲ Compute equilibrium prices and allocations

p, 𝜔′ [𝛼1], . . . 𝜔′ [𝛼𝑛] ← Equ(∑𝜔 [𝛼], 𝑏 [. . . ])
𝑥 [𝛼] ← 𝛼 (𝜔 ′ [𝛼]) for all 𝛼 ∈ A ⊲ Determine actions

return 𝑥 [𝛼1], . . . 𝑥 [𝛼𝑛], p, 𝜔′ [𝛼1], . . . 𝜔′ [𝛼𝑛]
end procedure
procedure Capitalism ⊲ Training loop

Initialize agent wealths𝑤 [𝛼] ∈ R for each 𝛼 ∈ A
Initialize agent properties 𝜔 [𝛼] ∈ Ω for each 𝛼 ∈ A
Initialize state 𝑠 ∈ S
while 𝑡 ∈ N do

𝜔 ← 𝜔 (𝑠) ⊲ Generate observation

· · · ← Market(𝜔) ⊲ get all outputs

𝑤 [𝛼] ← 𝑤 [𝛼] − p · 𝜔 ′ [𝛼] for all 𝛼 ⊲ Charge buyers

𝑤 [𝛼] ← 𝑤 [𝛼] + p · 𝜔 [𝛼] for all 𝛼 ⊲ Pay sellers

𝑠 [𝛼] ← 𝑠𝑥 [𝛼 ] (𝜔 [𝛼]) for all 𝛼⊲ Calculate property rights

𝑠′ [𝛼] ← 𝑥 [𝛼] (𝑠 [𝛼]) for all 𝛼 ⊲ Transform goods

𝑤 [𝛼] ← 𝑤 [𝛼] + R(𝑠 [𝛼], 𝑥 [𝛼], 𝑠′ [𝛼]) for all 𝛼
𝑠 ← ∑

𝑠′ [𝛼] ⊲ Update state

end while
end procedure

𝑠𝑥𝜔
2

(𝜔2)) (this is used to combine actions by different agents). The

agents now have dependent type signatures 𝛼 : (𝜔 : Ω) → X𝜔 ×R,
and the transition probability 𝑥 (𝑠) ∼ P(𝑠′ | 𝑠, 𝑥), reward function

R(𝑠, 𝑥, 𝑠′) and observation distributionO(𝜔 | 𝑠) are now interpreted

as applying to “private property”, i.e. to any goods bundle in their

respective domains, rather than to the whole state, e.g. each action

𝑥 (𝑠) defines a production function that transforms one goods bundle

into another, and 𝛼𝑏 is an agent’s valuation function over all possible
bundles, i.e. how much it is willing to pay for a particular perceived

bundle (if it’s differentiable, then ∇𝛼𝑏 (𝜔) can be interpreted as

the price vector it offers). The market algorithm proceeds as in

Algorithm 2 .

Computing prices via backpropagation. Though it remains

to be seen how standard RL problems might be cast in this setting,

we expect implementations of this algorithm to be much more

effective than of Def 2.1, as it allows us to use simpler and more

specialized agents in the collection A. In particular, these agents

do not need to estimate the valuations of the whole world, but only

of their particular input goods.

This last point can be illustrated particularly nicely when the

setup is an MDP, and rewards are replaced by consumers – here,

Ω = S and 𝜔 (𝑠) = 𝑠 , so 𝛼 : S → X can directly be interpreted as a

production function 𝛼 : S → S := 𝛼 (𝑠) (𝑠). Then if the agent can

estimate what the market prices of its output goods will be (e.g.

if prices are sufficiently stable that it makes sense to speak of a

“prevailing price” p), then it can compute its offered prices via the

chain rule – where 𝐷𝛼 denotes the Jacobian:
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∇𝛼𝑏 = 𝐷𝛼 · p (1)

i.e. once the market “graph” is fixed, prices can be computed by

simply backpropagating consumer bids through the graph. This

generalizes the result in [33], which demonstrated this relationship

for deep markets only.

3 MOTIVATION FOR MARKET-BASED AI
In this section, we describe how markets could potentially general-

ize neural networks and provide a more “flexible training mecha-

nism”. Although we have presented our algorithms in an RL setting,

they can even be applied to supervised learning tasks by treating

internal representations as “states”. To see this, it is illustrative to

see how a simple neural network can be recast as a market.

Theorem 3.1 (Neural networks as markets). Consider a fully-
connected neural network 𝑓 : X → Y := 𝑓𝑛 ◦ . . . 𝑓1 where each
𝑓𝑖 : R𝑚𝑖−1 → R𝑚𝑖 is a layer, i.e. a function of the form 𝑓𝑖 (x) =
𝜎 (𝑊𝑖x+b𝑖 ) where 𝜎 is a ReLU activation. Then there is a deep market
whose forward pass performs the same operation as 𝑓 .

Proof. The construction is straightforward. Define the state

space S :=
[⊕

1≤𝑖≤𝑛 S𝑖
]
⊕Y (with each S𝑖 := R𝑚𝑖

), with𝜔 : S →
Ω discarding only the last component Y which represents the true

label which is unchanged under all actions. Each X𝜔 = {(𝑊𝑖 , b𝑖 ) :
𝑊𝑖 ∈ R𝑚𝑖×𝑚𝑖−1 , b𝑖 ∈ R𝑚𝑖 } if𝜔 ∈ S𝑖−1 and empty if no such 𝑖 exists,

and an action 𝑥 = (𝑊𝑖 , i) acts on 𝑠 ∈ S𝑖−𝑖 as 𝑥 (𝑠) = 𝜎 (𝑊𝑖𝑠+b𝑖 ). The
reward R(𝑠, 𝑥, 𝑠′) = −ℓ (𝑠′, 𝑠′Y) for some loss function ℓ if 𝑠′ ∈ S𝑛
and 0 otherwise. Finally, let A consist of all constant maps to X𝜔
and endow non-zero wealth to only those agents whose actions’

parameters are the same as some 𝑓𝑖 . □

While the market model, i.e. the forward pass, in Theorem 3.1

is the same as the neural network, the training mechanism is Cap-

italism (as defined in Algorithm 1) rather than backpropagation.

Detailed below are some strengths of this we anticipate:

Search and dynamic scale. Reasoning is widely touted as a

key limitation of current-day LLMs [16, 21]. A view held by some

researchers including Yann LeCun [34], is that this is due to the

fact that “[neural networks] produce their answers with a con-

stant number of computational steps between input and output”,

independent of the complexity required by the problem. Some

proposed architectures that avoid this limitation include dynamic

neural networks [14], adaptive computation time [12] as well as

chain-of-thought based methods such as o1 [26]. Markets provide

a principled alternative, as here the structure of the computational

graph is itself learned, and different agents and structures may be

active for different inputs.

Complete feedback. Informally speaking, markets allow any
aspect of the system to be optimized. Formal results are needed to

make this statement precise, but intuitively: any aspect of a learner,

such as any hyperparameter, or meta-learning, can be changed

by adding a trader to the market who will profit if his changes

are beneficial and the incentives are correctly designed. This is

suggestive of the notion of “complete feedback” in AI alignment

research, which refers to the property that “the trainer can enact

any modification they’d like to make to the system” [8], and is

viewed as a desirable characteristic of an AI system for alignment.

4 PRACTICALITY AND FUTUREWORK
We have presented two general frameworks for market-based RL

agents, and illustrated that they may be seen to generalize neural

networks in a supervised learning setting, albeit with amore flexible

training mechanism that holds promise to address the limitations of

current-day AIs with respect to reasoning and alignment properties.

Despite these theoretical strengths, our algorithm as described

faces practical challenges to implement in real-world machine learn-

ing tasks: blindly enumerating large classes of even simple agents

is inefficient (compared to backpropagation, where the search is

guided by gradients), and we have to store many more agents in

memory than the “size” of the network (the exact number depending

on the rule we use to prune low-wealth agents). Some potentially

promising approaches include:

• “integrated” models which perform backpropagation by de-

fault but intelligently resort to markets when it expects

changing the network structure to be worthwhile

• having each agent simultaneously learn its parameters via

backpropagation

• decentralized set-ups, perhaps using frameworks such as

BitTensor [28], allowing traders to be shared across machine

learning applications.

Markets of LLMs. A more immediately feasible application is

to develop markets comprised of LLMs, i.e. where A is a collection

of LLM agents. For instance, one may let S = Ω be a message space,

and let actions act on 𝑠 by appending some “chain-of-thought item”

to the current message. The final reward is determined by human

feedback, and intermediate rewards by bids. Such a market would

function as a “reasoning model” analogous to o1.
The extension to a wide market is also immediate: agents may

bid for the right to read only a portion of the message space
6
–

this allows for more precise credit assignment to contributions by

different agents, and may be understood as to trees-of-thought [35]
what o1 is to chain-of-thought.

Theoretical work. The most pressing need at present is for

precise theoretical results on the effectiveness of market-based algo-

rithms. An immediate research agenda includes the following:

• Determining convergence and optimality conditions of
market algorithms; in particular, generalizing the “coverage”

results of BRIA [25] and logical induction [9], i.e. demon-

strating that the market will give a fair chance to the best

policy, conditional on some suitable wealth endowments.

• A Learning Theory perspective on markets and the wealth

update mechanism. In particular, (real-world) markets ap-

pear to have many useful features from an alignment stand-

point, such as their inherent capacity for online learning and

generalization even from imperfect reward signals.

• A thorough translation of economic terminology into

our model – especially concepts like perfect competition,

economies of scale, growth and welfare.

Finally, to accelerate empirical work with market-based algo-

rithms, we plan to release a Python library for efficiently creating

and applying market-based algorithms.

6
As for how to enable the agent to “inspect” the message to make an informed bid

without it stealing the entire message, [27] is relevant: the agent can subcontract

another LLM to inspect the message and place the bid, then have its context deleted.
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