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ABSTRACT
Reinforcement learning agents that act under partial observability
lack access to the environment state, and may need to account
for the observable history to select actions optimally. However,
offline training paradigms (e.g., training via simulator) are able
to exploit state information during the training phase to improve
learning performance. The literature contains a number of such
methods that exploit state information during training, and empir-
ically demonstrate superior performance during evaluation, e.g.,
asymmetric actor-critic methods that use state critics. However,
such methods tend to be poorly motivated and lack a theoretically
sound justification. In this work, we focus on the theoretical and
practical consequences of using states to train partially observable
agents, and propose interpretations to explain the role of state.
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1 INTRODUCTION
Partially observable control is characterized by agents that are
limited by acting upon indirect, partial, stochastic, and/or noisy
observations of the environment state. This “simple” limitation has
significant implications on problem complexity, the agent’s learn-
ing process, and the resulting optimal behaviors. Optimal control
under partial observability is characterized by two fundamental
emergent properties compared to its fully-observable counterpart:
(a) information-gathering, which refers to behaviors that reveal new
information to the agent, e.g., opening a drawer, turning around a
corner, etc. (b) memorization, which refers to the general necessity
of acting based on past observations (a.k.a. the observable history
ℎ) rather than only the most recent observation [6, 14].

Single-agent partially observable control is commonly formal-
ized as a partially observable Markov decision process (POMDP) [4,
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15], and model-free agents are commonly modeled by policy func-
tions that map an agent’s observable history into an action distri-
bution, 𝜋 : H → ΔA. As expected by the problem setting, the
policy interface lacks any direct notion of state. It is even possible
to convert a POMDP into an equivalent MDP that completely inte-
grates out the notion of state, e.g., Belief-MDPs [4]. Belief-MDPs
are defined in terms of beliefs, i.e., distributions over the state space
corresponding to the agent’s uncertainty. Belief-MDPs are a clear
demonstration of a fundamental property of partially observable
control: the state itself does not matter; only the belief-state does.

Nonetheless, state plays a clear role in the underlying dynamics
of any partially observable control problem: it is directly affected
by agent actions via the state dynamics 𝑇 : S × A → ΔS, and it
directly determines rewards via the reward function 𝑅 : S×A → R.
In that regard, state represents a form of privileged information of
clear importance even for partially observable control, and methods
that are able to exploit state while adhering to the stateless policy
interface are able to achieve significant boosts in learning perfor-
mance. Exploiting state information is possible in certain offline
training paradigms1 where the state is available during the training
phrase but not during the execution phase, e.g., when training is
performed via a simulated environment. In multi-agent control,
this training paradigm is well-known as centralized training for
decentralized execution (CTDE)2 [1, 10]. In single-agent control, this
has also been called offline training for online execution (OTOE) [3].

It is no surprise that a significant amount of effort has been spent
on developing methods that exploit privileged state information,
including single-agent methods [2, 3, 11, 17], multi-agent gradient-
based methods [5, 7, 8, 19], and multi-agent value decomposition
methods [9, 12, 13, 18]. However, many such methods often pro-
pose practical algorithms that are validated empirically by their
performance, but often lack an adequate theoretical motivation for
how state is used. Even though the latent state is an important
component of partially observable control, and even though offline
training paradigms provide a simple way to access state to train
partially observable agents, misuses may lead to unintended or
even catastrophic consequences [3, 8, 9], and properly considering
the consequences of how state is used remains critically important.

2 ASYMMETRIC ACTOR-CRITIC FOR PORL
In this section, we provide a very brief overview of asymmetric
actor-critic for single-agent partially-observable control.

1Not to be confused with offline RL, a.k.a. batch RL, where training is performed on a
static dataset rather than dynamic interactions with the environment.
2Although CTDE primarily focuses on sharing observations among all agents during
training (another form of privileged information), the use of state is also common.
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(Symmetric) Actor-Critic. In vanilla actor-critic, a history critic
model𝑉 (ℎ) is trained to evaluate the history policy 𝜋 (ℎ), and used
to obtain low-variance estimates of the policy gradient [16].

(Biased) Asymmetric Actor-Critic. Pinto et al. [11] develop a form
of asymmetric actor-critic where the history critic 𝑉 (ℎ) is replaced
with a state critic 𝑉 (𝑠). Aside from the change in input, the critic
model is fundamentally trained and used in same way to obtain
policy gradient estimates. For the better and for the worse, such a
small change can have great implications on the resulting algorithm.

Unbiased Asymmetric Actor-Critic. Baisero and Amato [2] expose
a number of theoretical and practical issues with the use of state val-
ues𝑉 (𝑠) to evaluate history policies in partially-observable control
problems. Such issues range from the state being inadequate to eval-
uate history-dependent behaviors, to the state value function of his-
tory policies 𝑉 𝜋 (𝑠) being not well-defined in partially-observable
control. To resolve these issues, Baisero and Amato propose the
use of history-state values 𝑉 (ℎ, 𝑠), another minor modification of
previous methods. Such a small change resolves all the theoreti-
cal and practical issues with state values, and result in superior
performance in environments with significant partial observability.

3 INTERPRETATIONS OF STATE
The mechanisms through which state values improve learning per-
formance remain not well understood. We underscore yet again
that partially observable control should be invariant to latent states,
and that only the corresponding belief-states should matter. How
is it, then, that asymmetric methods are able to outperform non-
asymmetric counterparts so strongly? Finding the answer to this
question will result in a better understanding of asymmetric meth-
ods, and help us design better asymmetric methods in the future.

We formulate four (nonmutually exclusive) mechanisms through
which state affects the training process and may hypothetically
benefit asymmetric methods. The first two (“state as information”
and “state as a feature”) examine the state in terms of its information
content compared to history. The second two (“state as exploration”
and “state as bootstrapping”) examine the state in terms of its direct
effects on the optimization and learning processes.

State as Information. Interpreting the state in terms of informa-
tion content is possibly the simplest interpretation to consider. It
is natural to consider that the state may be useful to the training
process of the agent by virtue of the additional information that
it provides compared to the observable history. This information
scales with state uncertainty, which implies that it is more effective
in problems with high amounts of partial observability. According
to this interpretation, a learning agent that evaluates its own ac-
tions based on the additional context of the groundtruth state is
better equipped to determine the quality of its actions.

State as a Feature of History. It is also plausible to interpret the
state information not as extraneous to the history, but as a different
representation of the information that is intrinsic to the history
itself. According to this interpretation, state can be viewed as a
stochastic feature of history. A history ℎ is implicitly associated
with a belief 𝑏 (ℎ) ∈ ΔS that represents a sufficient statistic for the
purposes of control. At the same time, the state appears to be a

sample from the belief 𝑠 ∼ 𝑏 (ℎ), and therefore a stochastic realiza-
tion of this sufficient statistic. It is therefore possible to reinterpret
state as a feature of history in partially observable control. In other
words, state represents information that is intrinsic to the history.

State as Exploration. State critics inject uncertainty-dependent
variance into the policy gradient estimates [8], consequently affect-
ing the convergence properties of the agent’s optimization process.
Though estimation variance is generally considered an issue to be
mitigated, it can also provide some advantages, e.g., by overcoming
plateaus or shallow local optima. Therefore, state values may be
interpretable as a form of uncertainty-driven exploration.

State as Bootstrapping. Due to their sequential nature, histories
are intrinsically more complex than states, and require sequence
models that are significantly harder to train than the simpler models
required by non-sequential states. Although state does not represent
the correct type of information for partially observable control, it
still provides information that is adjacent and relevant enough to
bootstrap the training of better critic values. Therefore, is it possible
that state values are helpful simply by virtue of useful state features
𝜙 (𝑠) being significantly easier to learn than useful history features
𝜙 (ℎ), especially in the earlier stages of training. If so, state values
could cause a bootstraping effect that allows the agent to start
learning before appropriate history features are learned.

Evaluation Methodology. We emphasize that the proposed inter-
pretations of state are not necessarily mutually exclusive. Further,
partial observability is a wide spectrum, and control problems may
differ greatly, which may affect the importance of each interpreta-
tion. For example, “state as information” is more justified in low
observability problems characterized by higher state uncertainty,
whereas “state as a feature” is more justified in high observability
problems characterized by lower state uncertainty. On the other
hand, “state as exploration” may be adaptive to the amount of ob-
servabilty, given that state value variance is directly related to belief
entropy. Similarly, “state as bootstrapping” may be equally justified
both in high and low observability problems, since state features
are easier to learn than history features in both cases.

It seems unlikely that a single evaluation could result in a single
clear answer to our primary question. To evaluate these hypothe-
sized roles of state, we consider a variety of empirical experiments
that examine state values from different angles: (a) Evaluation of a
variant of asymmetric actor-critic that employs partial state values
rather than full states; (b) Evaluation of a variant of asymmetric
actor-critic that employs counter-factual state values sampled in-
dependently from the current belief 𝑠 ∼ 𝑏 (ℎ); (c) Evaluation of a
variant of actor-critic that employs history values injected with
artificial noise such that the resulting variance profile is compa-
rable to that of state values; (d) Evaluation of a tabular variant
of asymmetric actor-critic that does not employ value-function
approximation models, and performs no generalization across his-
tories and states; (e) Evaluation of the learning performance of the
critics themselves; (f) Evaluation of the relative importance of state
and history features in determining the critic’s output.
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