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ABSTRACT
Multi-agent reinforcement learning has emerged as a powerful
framework for developing collaborative behaviors in autonomous
systems. However, existing MARL methods often struggle with
scalability in terms of both the number of agents and decision-
making horizons. My research focuses on developing hierarchical
approaches to scale up MARL systems through two complementary
directions: structural scaling by increasing the number of coor-
dinated agents and temporal scaling by extending planning hori-
zons. My initial work introduced HiSOMA, a hierarchical frame-
work integrating self-organizing neural networks with MARL for
long-horizon planning, and MOSMAC, a benchmark for evaluating
MARL methods on multi-objective MARL scenarios. Building on
these foundations, my recent work studies L2M2, a novel frame-
work that leverages large language models for high-level planning
in hierarchical multi-agent systems. My ongoing research explores
complex bimanual control tasks, specifically investigating multi-
agent approaches for coordinated dual-hand manipulation.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) has emerged as a pow-
erful framework for developing collaborative multi-agent systems
(MAS), demonstrating remarkable success across various domains
including traffic control [33], game playing [25], and robotic ma-
nipulation [22]. However, scaling up MARL for large numbers of
agents and extended planning horizons remains a fundamental
challenge. Current approaches face several critical limitations: the
curse of dimensionality in large-scale systems [3], complex credit
assignment over long time horizons [1], and the need for efficient
exploration in high-dimensional state-action spaces [15].
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Traditional MARL methods have primarily focused on scenarios
with limited agents and relatively short horizons [5, 9]. While these
approaches have shown promising results in controlled environ-
ments, they often struggle to address real-world applications that
demand coordination among large agent populations over long
horizons. Recent work suggests that hierarchical approaches offer
a promising direction for scaling up MAS [2, 30], but developing
effective hierarchical frameworks that can handle both structural
and temporal scaling remains an open challenge.

My dissertation focuses on addressing these limitations through
hierarchical MARL, focusing on two dimensions. The first dimen-
sion focuses on structural scaling, where we develop methods to
effectively coordinate increasing numbers of agents through hier-
archical decomposition and modular architectures, enabling MARL
algorithms to handle larger agent populations while maintaining
computational efficiency. The second dimension addresses tempo-
ral scaling, where we create novel approaches for managing long
planning horizons and complex sequential tasks through temporal
abstraction and task decomposition. By systematically investigating
both dimensions, this research aims to advance MARL’s capability
to address real-world applications that demand sophisticated coor-
dination among numerous agents over long horizon, such as urban
traffic control [33] and multi-robot coordination [22].

2 PRELIMINARY STUDIES
My preliminary research [10] investigates scaling upMARL systems
through two complementary studies: HiSOMA [12], a hierarchical
control framework and MOSMAC [11], a multi-objective MARL
benchmark [23]. Due to the page limit, we refer interested readers
to my earlier doctoral consortium paper published at AAMAS 2024
and the full papers for these works for more details.

2.1 HiSOMA: A Hierarchical Framework for
Multi-agent Hierarchical Coordination

HiSOMA [12] is a novel three-level control architecture where a
FALCON controller [28] coordinates multiple subsystems known
as mini-MAS to address the challenges of MARL in long-horizon
planning [7, 15]. This design enables both structural decomposition
through modular mini-MAS units and temporal decomposition
through sequential subtask allocation. HiSOMA employs state-of-
the-art MARL algorithms including QMIX [24], QTRAN [26], and
Qatten [31] for middle-level control while using learned cognitive
codes for high-level planning. HiSOMA demonstrated significant
improvements over baseline approaches, particularly in complex
scenarios where non-hierarchical methods struggle [20, 30].
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2.2 MOSMAC: Benchmarking MARL on
Long-horizon Multi-objective Tasks

Our research revealed a critical gap in the MARL community:
the lack of comprehensive benchmarks for evaluating methods in
long-horizon [14] and multi-objective [23] scenarios. We addressed
this limitation by developing MOSMAC [11], which extends the
SMAC [25] to include multiple objectives including combat, nav-
igation, and safety. MOSMAC introduces scenarios where agents
must balance multiple competing objectives [23] while maintaining
coordination over long horizons [19]. Through extensive evaluation
of state-of-the-art MARL algorithms, MOSMAC revealed critical
limitations in current approaches to long-horizon planning and
multi-objective optimization. These findings have helped identify
promising directions for developing more scalable MARL systems.

3 FUTUREWORK
Building upon previous preliminary studies, I am pursuing sev-
eral research directions to further advance the scalability and ap-
plicability of MAS. My ongoing work focuses on two key areas:
investigating efficient architectures for multi-agent coordination
and developing novel approaches for complex bimanual control
tasks. These directions aim to advance hierarchical MARL while
addressing practical challenges in real-world applications.

3.1 L2M2: Language-guided Hierarchical MARL
Recent studies in hierarchical MARL have demonstrated promising
results in coordinating multiple agents [2, 18], but often rely heav-
ily on domain-specific heuristics and pre-defined subtasks [13, 20].
Large language models have shown remarkable capabilities in rea-
soning and planning [8, 16], though their integration with MARL
remains largely unexplored. We developed L2M2 (Large Language
Model and Multi-agent Reinforcement Learning), a novel frame-
work that leverages LLMs for high-level strategic planning in MAS.

L2M2 introduces a hierarchical architecture where an LLM agent
serves as a domain-agnostic planner, following the LLM-as-policy
paradigm [6, 27] to decompose complex tasks and coordinate RL
agents. At the framework’s core is a specialized translator module
that enables bidirectional communication between the LLM and
MARL components, converting environmental states into natural
language for LLM processing and translating the LLM’s decisions
into concrete subtasks. This approach builds upon recent advances
in combining language models with embodied agents [32] while
addressing the unique challenges of multi-agent coordination.

A key innovation of L2M2 is its zero-shot planning capability [8],
where pre-trained LLMs can effectively guide MARL agents without
requiring additional training on specific tasks. This significantly
reduces the computational overhead typically associated with hi-
erarchical MARL methods [21, 30]. We demonstrated that L2M2
achieves superior performance while requiring significantly fewer
training samples compared to existing approaches [24, 26]. The
framework maintains robust performance without pre-defined way-
points or heuristics as guidance, demonstrating effective strategy
generation through language-based reasoning [4].

These results highlight how integrating LLMS with MARL sys-
tems creates a powerful synergy for scaling up multi-agent coordi-
nation. By combining LLMs’ strategic reasoning capabilities with

MARL’s precise control abilities, L2M2 opens new avenues for de-
veloping more generalizable and efficient MAS [17, 34]. Our work
also suggests promising directions for future research in language-
guided policy learning and multi-agent coordination.

3.2 MARL for Bimanual Control
Another focus ofmy research is multi-agent approaches for complex
bimanual control tasks, particularly on dexterous musical perfor-
mance. While existing methods for hand motion synthesis have
shown success in object grasping and manipulation, coordinated
dual-hand control remains challenging due to its high dimension-
ality and complex temporal synchronization requirements. Most
current approaches rely heavily on motion capture data or focus
solely on single-hand control, limiting their applicability and scal-
ability. We propose reframing bimanual control as a hierarchical
multi-agent coordination problem, where different components of
the hands are modeled as cooperative agents within a three-level
control hierarchy: body-level coordination, hand-level management,
and finger/joint-level execution.

Our initial work focuses on guitar playing as a representative test
case, leveraging our experience with L2M2’s language-guided plan-
ning for high-level task decomposition and HiSOMA’s hierarchical
control for temporal coordination. This domain presents unique
challenges in terms of heterogeneous task requirements between
hands and precise temporal synchronization [29]. By extending
our hierarchical MARL approaches to this physically-constrained,
high-dimensional domain, we aim to develop more generalizable
frameworks for complex manipulation tasks while advancing our
understanding of scalable multi-agent coordination.

4 CONCLUSION
This paper presents several studies on scaling up MAS through hi-
erarchical methodologies. My completed work, including HiSOMA
and MOSMAC, has established frameworks for hierarchical control
and evaluation in MARL systems, while the recent development of
L2M2 demonstrates how integrating LLM with MARL can create
more flexible and efficient coordination. The proposed research
advances the field through novel hierarchical frameworks that ef-
fectively combine different AI paradigms, scalable approaches for
long-horizon coordination, and comprehensive evaluation bench-
marks. Our ongoing work on bimanual control further extends
these principles to complex physical manipulation tasks, validating
the effectiveness of hierarchical approaches in real-world applica-
tions. As autonomous systems become increasingly prevalent, this
work takes important steps toward enabling effective coordination
of large-scale MAS while opening new avenues for future research.
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