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ABSTRACT
Multi-Agent Reinforcement Learning can be used to learn solutions
for a wide variety of tasks, but there are few safety guarantees
about the policies that the agents learn. My research addresses the
challenge of ensuring safety in communication-free multi-agent
environments, using shielding as the primary tool. We introduce
methods to completely prevent safety violations in domains for
which a model is available, in both fully observable and partially
observable environments. We present ongoing research on max-
imizing safety in environments for which no model is available,
utilizing a centralized training, decentralized execution framework,
and discuss future lines of research.
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1 INTRODUCTION
Multi-Agent Reinforcement Learning has gained prominence as
a method for solving a variety of tasks, such as RTS games [13],
optimizing warehouse robot logistics [9], and robotic soccer [10].

However, many current reinforcement learning methods are not
suitable for safety-critical domains. A misspecified reward function
could lead to “reward hacking” [2, 5]. Even in environments without
hackable reward functions, balancing safety with the agent’s objec-
tive is difficult—choosing a too high penalty for safety violations
may lead to the agent learning to not move at all. Even a successful
learned policy is a black box, with no behavioral guarantees.

In contrast, the field of reactive synthesis [6], a subfield of formal
methods, provides tools to synthesize systems that are guaranteed
to adhere to a given safety specification. However, despite the many
optimizations present in tool implementations, many techniques
from the formal methods literature still struggle with scalability.

My Ph.D. research focuses on combining the scalability of re-
inforcement learning and the guarantees of formal methods to
achieve safe multi-agent reinforcement learning.
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In particular, we focus on communication-free domains, as reli-
able communication is not always available. Even in environments
where agents usually have access to some method of communi-
cation, it is vital to develop a safe backup policy in the event of
hardware failure or radio interference.

We choose shielding [1] as a well-understood and simple to im-
plement base to build off of. Each time step, the shield computes
a set of safe actions for the agent to take. Depending on the ex-
act formulation—each implementation shares the same theoretical
guarantees—the agent selects an action from this safe set, the agent
ranks each action and the shield chooses the highest-ranked safe
action, or the agent proposes an action and the shield intervenes
to replace the action if it is unsafe. In the multi-agent setting, each
agent should have its own shield. If there is no communication
between the agents, then there is no communication between the
shields either. The challenge is to construct a set of shields, one per
agent, such that as long as each agent acts according to its own
shield, the joint behavior of all agents in their shared environment
follows a given safety specification.

We analyze the problem domain along two dimensions:

(1) Model Availability. In certain environments, a human-
provided abstraction of the environment may be available.
If so, it is often possible to utilize this model from the start,
to completely prevent safety violations even during training.
Otherwise, the model must be learned, and safety violations
may only be prevented on a best-effort basis.

(2) Partial Observability. Even if a model is available to denote
safe actions at any given state, agents may not have enough
information to determine the current environment state in a
partially observable environment. Determining a safe action
becomes a complex task when each agent in a multiagent
system has a different set of possible states.

Our research has addressed both the fully observable [11] and
partially observable [12] model-available domains. We are currently
studying the fully observable model-unavailable domain, and plan
to address the partially observable variant in future work.

2 THE LEAP TO MULTIPLE AGENTS
A recurring theme in both the fields of reinforcement learning and
formal methods is that the addition of multiple agents—especially
when those agents are unable to communicate with each other—
dramatically increases the complexity of a problem. Single-agent
reinforcement learning was used to train an agent that beat the
world champion in Go nearly eight years ago [16], but until recently,
multi-agent reinforcement learning methods struggled in the toy
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Dec-Tiger domain [14]. Likewise, many problems in formal methods
become undecidable when set in a decentralized domain [18].

Therefore, our first challenge was to extend shielding to the
communication-free multiagent domain. While existing methods
address scalability in multi-agent domains by paritioning the envi-
ronment into small, independent areas [7], such methods require
local communication to coordinate actions of multiple agents within
one area, or the movement of agents between two areas.

Our initial extension assumes the full observability of all safety-
relevant information, so all agents could agree on the current en-
vironment state and the set of safe joint actions, without needing
communication. The setting is similar to how, upon approaching a
stop sign, all agents (drivers) participating in the stop sign inter-
action have a shared understanding of the set of safe joint actions.
In the driving case, all agents can navigate a stop sign based on a
shared understanding of which agent receives priority, according
to an ordering decided upon in advance.

Rather than requiring a human to create a set of rules for which
agent has priority, our method first assigns priority to each agent
in a deterministic manner, so that no communication is required
for all agents to agree on an ordering. The individual shields then
use a deterministic algorithm to iterate through all agents in order
of priority, allowing the highest priority agents to perform as many
individual actions as possible, while guaranteeing that at least one
safe action remains available for low-priority agents. Our algorithm
ensures that the result is maximally permissive; i.e. it is impossi-
ble to enable any additional individual actions to the result while
maintaining the safety specification.

In our experiments [11], this approach allows reinforcement
learning agents to successfully learn to solve a variety of gridworld-
based tasks with zero safety violations, even during training.

3 PARTIAL OBSERVABILITY
Without full observability, any given observation may map to sev-
eral possible ground-truth states. In certain cases, such as when
agents have momentum but can only observe position, it is still
possible for all agents to determine the state from only partial in-
formation (for example, by computing the difference in position
from the previous time step), and so [11] still applies.

However, many partially-observable environments do not have
this feature. In the single-agent partially observable case, it is pos-
sible to apply a shield based on the set of states that the agent
believes the environment may inhabit (the belief support) [4, 8].
This is challenging to extend to the multi-agent domain, as one
agent’s belief support may not match the other agent’s.

As an example, for some observation, Agent 1’s belief support
may include states A and C. Using the environment model, Agent
1 knows that if the environment really occupies state A, Agent
2’s belief support will include states A and B; on the other hand,
if the environment actually is in state C, Agent 2’s belief support
would include states C and D. Even though Agent 1 knows that
the environment is not in states B or D, it must consider what its
own belief support would be in such states, because Agent 2 must
take into account Agent 1’s beliefs when making its own decisions
about what actions are safe. Clearly, this recursive line of reasoning
can easily become unmanageable.

Our solution [12] is to avoid an agent-centric reasoning process,
and to treat safe action selection as a global constraint satisfaction
problem. We introduce three families of constraints: (1) There must
always be a safe individual action available for every observation
that an agent may encounter; (2) Unsafe joint actions are disallowed
at specific environment states; and (3) An encoding of how joint
actions at a specific environment state are related to individual
actions for a given agent’s observation. We encode all of these
constraints as a boolean formula, and use a SAT solver [3] to find a
set of safe individual actions for each observation. We then apply a
post-processing step to these action sets to ensure that the set of
enabled actions is maximally permissive. This entire process can
occur ahead of time; the results are then provided to each agent,
which can then each operate without any further communication.

If the SAT solver fails to find a shield, or if the shield is overly
restrictive, we can allow the algorithm to take into account a
bounded observation history. However, increasing the bounded
history length too much can lead to an exponential growth in syn-
thesis time. As this shield synthesis problem is closely related to
the undecidable problem of decentralized reactive synthesis, it is
impossible to construct a shield for every environment. Still, our
method successfully constructs a shield for a variety of partially
observable environments; reinforcement learning agents operating
under these shields do not incur any safety violations, and generally
learn to perform their tasks well.

4 LEARNING AN ENVIRONMENT MODEL
As previously noted, an environment model may not always be
available in advance. Our ongoing research addresses this domain.

Several reinforcement learning methods for centralized training
and decentralized execution (CTDE) operate by learning a cen-
tralized signal, such as the sum of expected future rewards—the
Q-value—of a joint action, and automatically decomposing it into
per-agent utility functions that follow the Individual-Global-Max
principle [15, 17, 19]. These methods are structured such that if each
agent independently chooses its highest-utility individual action,
the joint action’s Q-value is maximized.

We take inspiration from this structure, and adapt it to learning
individual safety values for each agent, such that when each agent
independently chooses an action that it believes is safe, the resulting
joint action is safe. Preliminary results show that this is a promising
direction for learning a task with fewer safety violations, compared
to unshielded CTDE methods.

My goals for this research include further development of the
theoretical aspects of shield learning in large environments without
a provided model, as well as more extensive evaluations and com-
parisons of similar methods. Finally, we plan to extend this method
to include environments with arbitrary partial observability.
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