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ABSTRACT
I aim to build safe and collaborative multi-robot systems. My re-
search so far has focused on bi-level optimization. In the constrained
zero-sum case, I solved the reach-avoid problem, where one robot
must reach a target area defended by another. In the unconstrained
general-sum case, I am currently working on improving actor-critic
reinforcement learning (RL) algorithms with low-rank approxima-
tions of the inverse-Hessian vector product to capture the depen-
dency between actor and critic. I hope to extend my research to
heterogeneous teams of robots by augmenting RL with classic con-
trol algorithms through differentiable programming and through
continual multi-agent RL to organically learn diverse policies. These
directions aim to advance scalable, safe, and collaborative AI for
dynamic real-world environments.
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1 EXTENDED ABSTRACT
As AI becomes more ubiquitous, my aim is to build collaborative,
safe, and pro-social autonomous robots that can continuously adapt
to changing environments. I believe this is possible by developing
multi-agent reinforcement algorithms with game theoretic princi-
ples.

My first project, Differential Stackelberg Markov Games with Ap-
plications to Mobile Robots was core to my development and under-
standing of game theory, reinforcement learning (RL) and control
theory. The objective was to learn a reinforcement learning policy
to avoid collisions. We formulated the problem as a discrete-time
zero-sum Markov game where one player, the evader had to reach
a target area while another player, the pursuer tried to defend the
target area [4]. Our objective was to learn a safe policy for the
evader such that it would be robust to the pursuer’s policy. We did
this by modeling the game as a two-player zero-sum game with
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dependent constraints—specifically, the evader was constrained to
remain outside the pursuer’s striking distance—which we solved
using RL. Specifically, we developed and implemented a nested
policy gradient algorithm where the evader was constrained by the
position of the pursuer. I implemented this algorithm to solve the
game assuming both a discrete action space by applying an action
mask, and a continuous action space by building a Lagrangian into
the reward function. Finally, I deployed the algorithm on a pair of
drones, overcoming the sim2real gap by adding random noise to
the transitions. Building constraints into an RL agent’s behavior
was a step towards building safer and more reliable AI [5].

While the previous interaction was best modeled by a zero-sum
Stackelberg game with dependent constraints, there are many win-
win situations in the real-world that are better modeled as general-
sum games. Two-player Stackelberg games in which the players
have individual utility functions are also called bilevel optimiza-
tion problems (BLOPs) [2], where the upper-level player’s action
is observed by the lower-level player. While computing a global
equilibrium is not generally tractable [8], I have been investigat-
ing local solutions , which are guaranteed to exist assuming a
strongly-convex lower-level utility function. Solving a BLOP in-
volves following the hypergradient of the upper-level objective.
One of the most popular ways to do this is to leverage the implicit
function theorem (IFT), which reduces the problem to computing
an inverse Hessian-vector-product (IHVP) [7]. While many turn
to iterative methods like conjugate-gradient to compute the IHVP,
I have observed that the Hessians of neural networks are usually
ill-conditioned, leading to arbitrarily bad solutions. Indeed, using
conjugate gradient to compute the IHVP can actually make the
solution worse. However, we have found success with the Nyström
method [6], which computes a low-rank approximation of the IHVP.
With these results in hand, I have developed an improved Stackel-
berg actor-critic algorithm [9]. The Stackelberg view of actor-critic
is that there is an inherent dependency between the actor and the
critic, so training them independently, as most RL algorithms do,
leaves some performance gains on the table. Our current paper,
which uses the Nyström method to approximate the hypergradient
and nests the critic as in my earlier work, has led to improved per-
formance on continuous control tasks.

One natural progression of this line of work would be to investi-
gate general-sum games between teams of agents in mobile-robotic
applications, such as logistics and transportation. One specific prob-
lem of interest to me is the coordination and optimization of teams
of vehicles, such as drones and trucks, for efficient delivery oper-
ations. This type of setting is challenging as it involves an inter-
play between individual and group-level objectives, where agents
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must learn coordinated strategies while adhering to safety and op-
erational constraints. A promising approach to addressing these
challenges is to augment RL policies with differentiable control
principles, such as model predictive control or barrier functions.
In this framework, RL agents could adaptively set parameters that
force the behavior of the control agents into a desired solution.
This hybrid approach leverages the flexibility of RL to optimize the
behavior of the entire system while maintaining the robustness
and stability offered by control-based methods, enabling joint op-
timization of safety, efficiency, and task performance in complex
multi-agent systems.

Another promising future direction is to investigate continual rein-
forcement learning for multi-agent systems. The main technique
I propose to explore is continual backpropagation [3], which se-
lectively resets the least important neurons to maintain plasticity
in the network. This approach could yield particularly interesting
results in the context of multi-agent systems, especially if it were
to lead to the organic emergence of heterogeneous agents without
pre-defining their roles or behaviors. As the agents continually
learn and adapt their behavior to perform different tasks, their
neural networks should develop distinct specializations, which can
be beneficial for the overall performance of a team. For example,
this natural differentiation could lead to more robust and adaptable
systems, where agents collectively compensate for individual limita-
tions or failures [1]. Furthermore, this approach could enable teams
to develop both specialized expertise and the flexibility to adapt to
new situations, addressing a fundamental tension in multi-agent
system design.

These research directions present unique challenges that cannot
be effectively addressed using traditional optimization methods
alone due to the complexities introduced by the heterogeneous
nature of the agents and the dynamic environments in which they
operate. To tackle these challenges, I hope to break new ground
in multi-robot research. The intractability of general-sum games
means that scalable reinforcement learning will be key to capturing
the intricate interactions and trade-offs between individual agent
objectives and overall system performance. The potential impact of
this research extends beyond specific applications, as the insights
gained can contribute to the design of more efficient, robust, and

adaptive multi-agent systems for various domains, such as manu-
facturing, healthcare, logistics and transportation. Furthermore, the
frameworks and algorithms developed in this research can inform
the design of human-robot collaborative systems, where humans
and intelligent robots work together seamlessly to achieve shared
objectives, and are core to building well aligned AI systems.
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