
FindMe: A Prototype Videogame AI based on CTL with an
Optimized Synthesis Algorithm

Demonstration Track

Marco Aruta
University of Naples Federico II

Naples, Italy
marco.aruta@unina.it

Vadim Malvone
Télécom Paris
Paris, France

vadim.malvone@telecom-paris.fr

Aniello Murano
University of Naples Federico II

Naples, Italy
aniello.murano@unina.it

Vincenzo Pio Palma
University of Naples Federico II

Naples, Italy
vincenzop.palma@studenti.unina.it

Salvatore Romano
University of Naples Federico II

Naples, Italy
salvatore.romano2@unina.it

ABSTRACT
Wepresent FindMe, a prototype tool that enhances AI-driven decision-
making in Non-Player Characters (NPCs) within Unreal Engine
5.4. Our approach utilizes formal verification techniques, specifi-
cally Computation Tree Logic (CTL), to enable real-time adaptive
behavior in NPCs. Additionally, we employ an innovative model
optimization technique to enhance our verification process. Our
in-engine implementation of CTL model checking outperforms
existing tools like NuSMV, even in more complex scenarios.

KEYWORDS
Gaming; Model Checking; Reactive Synthesis; Strategic Reasoning

ACM Reference Format:
Marco Aruta, VadimMalvone, Aniello Murano, Vincenzo Pio Palma, and Sal-
vatore Romano. 2025. FindMe: A Prototype Videogame AI based on CTL
with an Optimized Synthesis Algorithm: Demonstration Track. In Proc. of
the 24th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS,
3 pages.

1 INTRODUCTION
Artificial Intelligence (AI) has revolutionized the video game indus-
try but still faces challenges in adapting to dynamic environments
and player actions. Despite advances like dynamic scripting [6],
reinforcement learning [1], and behavioral cloning [4], many games
use simple, repetitive AI that frustrates players: commercial AI sys-
tems rely on predefined rules, limiting adaptability and strategic
gameplay. Formal methods offer a rigorous framework for veri-
fying system properties, but real-time decision-making in game
engines is still challenging. This paper introduces a novel formal
verification solution for AI in video games, integrated within Unreal
Engine 5. Using Computation Tree Logic (CTL), our method enables
real-time decision-making and debugging, allowing adaptable NPC
behaviors. This is the first practical integration of CTL in Unreal

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Engine, providing an in-engine solution that eliminates external
tools and simplifies development: previous researches employed
only external tools like NuSMV to analyze the correctness of game
logic offline [3, 7] or completely simulated environments [5]. We
utilize Kripke structures to model gaming environments and sup-
port temporal reasoning, enabling NPCs to dynamically react to
player actions. Our optimized state evaluation through directed
graph analysis, based on state reachability using the A* algorithm,
fastens NPC responses. Our approach ensures optimal NPC tactics
across various game genres and outperforms NuSMV in tests. This
integration empowers developers to create intelligent, adaptable
AI agents, providing enhanced strategic interactions and bridging
the gap between static behaviors and dynamic gameplay.

2 THE TOOL
The tool, available onGitHub1, features an innovative AI framework
incorporated within Unreal Engine 5.4, utilizing Computation Tree
Logic (CTL) for real-time NPC decision-making. This framework
applies formal verification methods, typically reserved for thorough
system analysis, to enable NPCs to adjust their behavior in response
to the evolving game environment. Key Features: (1) Adaptive AI :
NPCs intelligently make real-time decisions, adapting fluidly to
environmental changes and player actions. (2) Efficiency: The tool
employs optimized model-checking algorithms to concentrate on
pertinent game states, enhancing performance and avoiding unnec-
essary data handling. (3) Ease of Use: From the player’s perspective,
there is no extra effort to interact with this AI. The tool is integrated
into the game seamlessly and represents a significant advancement
in the development of context-aware systems.

3 INTEGRATION
Our model checking system is implemented in C++ and integrated
in Unreal Engine 5.4 structures and classes. Our testbed game is a
strategic asymmetric survival-stealth game featuring two opposing
entities: a human-controlled Hunter and two AI-controlled Runners
(a demonstration video can be found on Youtube2). The Hunter’s
goal is to eliminate both Runners using their firearm, while the
Runners must find one of four potential exits. It takes place on a

1https://github.com/VincenzoPalma/FindMe
2https://youtu.be/Ujv0Gx6oUaA

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2997

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/VincenzoPalma/FindMe
https://youtu.be/Ujv0Gx6oUaA

labyrinthine map characterized by loops, dead ends, and multiple
pathways. This design challenges players to devise and adapt strate-
gies for successful navigation. The Hunter starts in the center of
the map, while the Runners begin in a corner. Two to three exits
are randomly selected for each game, preventing the Hunter from
focusing solely on a single point and adding to the strategic depth of
the game. To enhance the efficiency of our model checking system,
instead of loading the entire model from a file, we load only the
states reachable from the current game state. This ignores irrelevant
states, reducing parsing time and ignoring many other states (e.g.,
NPC1 alive when currently dead) that could be irrelevant. Further
efficiency is achieved by a modified A* algorithm prioritizing states
most likely to satisfy the formula. The optimization approach in-
cludes: (1) State Exploration: States are prioritized using a heuristic
(h) and path cost (g) combined into f = g + h. The heuristic h re-
flects how many sub-formulas (representing sub-objectives) of 𝜑
the state fails to meet, while g counts howmany states are traversed
starting from s. (2) Priority Queue: States are managed in a priority
queue, with those having the lowest f-scores explored first. Visited
states are tracked to prevent redundant checks. (3) Target State
Identification: If a state satisfies 𝜑 , the algorithm outputs the path
to it. If no solution exists, the queue becomes empty. (4) Dynamic
Loading: When unexplored states are needed, the model expands
to include them, recalculating scores as necessary. This approach
accelerates model checking by focusing only on relevant states and
leveraging heuristic-driven exploration to find a solution efficiently.
(5) Caching: A singleton class caches the starting state and formulas
to minimize file access and JSON parsing overhead.

Figure 1: The game into which the tool is integrated.

4 EXPERIMENTS
Testing was conducted on a system with Windows 11, 32GB of
DDR4 RAM, an AMDRyzen 7 5800X octa-core CPU, and an NVIDIA
RTX 3070 GPU with 8GB of GDDR6 VRAM. The in-engine model
checking system was tested in Unreal Engine 5.4.3, with data col-
lected via Unreal Insights, while NuSMV testing used Windows
PowerShell and the Measure-Command command. Each test, re-
peated 1000 times per formula, ensured that every CTL operator was
tested, examples of formula employed are: (1) AG(¬NPC1InDanger
∨ EF(¬NPC1InDanger)); (2) EX(¬NPC1InDanger); (3) EX(¬NPC1In-
Danger ∧ NPC1NearExit). Tests used a total of three models (with
10, 100, and 250 states obtained by either increasing or decreasing
the abstraction of our base game state space), examining the im-
pact of model size and transitions on evaluation time. Formulas
were evaluated starting from intermediate states to highlight the
optimized system’s performance gains. For both in-engine (pre-
optimization model, post-optimization model) and NuSMV models
were tested formulas with and without nested CTL temporal oper-
ators up to one nesting level: the complexity of the formulas does

not exceed this level, as CTL formulas in real scenarios typically
do not become more complex. The tests focused on response times,
which include both model parsing and formula evaluation: pars-
ing, involving file reading and state graph construction, dominated
the total time due to single-formula evaluations. NuSMV performs
consistently with smaller models, but its performance degrades
significantly as the number of states increases because it fully loads
and evaluates the entire model. In contrast, the in-engine system,
particularly after optimization, scales more effectively by only load-
ing reachable states from the starting point, substantially reducing
parsing and evaluation times. The optimized in-engine system out-
performs its pre-optimization version, achieving up to 50% faster
execution times. Fully connected models with a large number of
transitions further highlight the optimized system’s advantages, as
it focuses only on the necessary parts of the model. Additionally,
simpler formulas with fewer subformulas or operators generally
result in faster evaluation times compared to complex, nested for-
mulas. However, the optimized system maintains relatively stable
execution times due to its efficient design.

10 100 100 250 250
0
5
10

Number of states

Av
g
Ti
m
e
(m

s)
Pre-Opt
Post-Opt
NuSMV

10 100 250
0
5
10

Number of states

Av
g
Ti
m
e
(m

s)

Figure 2: Response times for CTL formulas (In-Engine vs
NuSMV) utilizing both EG (1° graph) AG operator (2° graph).

5 CONCLUSIONS
We presented FindMe, a tool integrating Computation Tree Logic
(CTL) model checking within a real-time game engine to enhance
dynamic decision making for NPCs. By leveraging formal verifi-
cation, FindMe enables adaptive NPC behaviors that dynamically
respond in real-time to player actions and environmental changes.
Our integration within Unreal Engine 5.4, bypassing external tools
like NuSMV, marks a significant advancement in game AI develop-
ment. However, scalability in large environments remains a chal-
lenge, impacting real-time performance. Future work will explore
scalability for larger environments and refine optimization tech-
niques, such as state abstraction [2].

ACKNOWLEDGMENTS
This research has been supported by the PRIN project RIPER (No.
20203FFYLK), the PNRR MUR project PE0000013-FAIR, the InDAM
2023 project “Strategic Reasoning in Mechanism Design” and the
PNRR MUSA project INFANT.

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2998

REFERENCES
[1] Nicolas A. Barriga, Marius Stanescu, Felipe Besoain, and Michael Buro. 2019.

Improving RTS Game AI by Supervised Policy Learning, Tactical Search, and Deep
Reinforcement Learning. IEEE Computational Intelligence Magazine 14, 3 (2019),
8–18. https://doi.org/10.1109/MCI.2019.2919363

[2] Francesco Belardinelli, Angelo Ferrando, Wojciech Jamroga, Vadim Malvone, and
AnielloMurano. 2023. Scalable Verification of Strategy Logic through Three-valued
Abstraction. arXiv:2310.17219 [cs.MA] https://arxiv.org/abs/2310.17219

[3] Nao IGAWA, Tomoyuki YOKOGAWA, Mami TAKAHASHI, and Kazutami ARI-
MOTO. 2020. Model Checking of Visual Scripts Created by UE4 Blueprints. In 2020
9th International Congress on Advanced Applied Informatics (IIAI-AAI). 512–515.
https://doi.org/10.1109/IIAI-AAI50415.2020.00107

[4] Tim Pearce and Jun Zhu. 2021. Counter-Strike Deathmatch with Large-Scale
Behavioural Cloning. arXiv:2104.04258 [cs.AI]

[5] Ruslan Rezin, Ilya Afanasyev, Manuel Mazzara, and Victor Rivera. 2018. Model
Checking in Multiplayer Games Development. In 2018 IEEE 32nd International
Conference on Advanced Information Networking and Applications (AINA). 826–833.
https://doi.org/10.1109/AINA.2018.00122

[6] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper, and Eric Postma. 2006.
Adaptive game AI with dynamic scripting. Machine Learning 63 (2006), 217–248.

[7] Kazuki Wayama, Tomoyuki Yokogawa, Sousuke Amasaki, Hirohisa Aman, and
Kazutami Arimoto. 2023. Verifying Game Logic in Unreal Engine 5 Blueprint Visual
Scripting System Using Model Checking. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22). Association
for Computing Machinery, New York, NY, USA, Article 213, 8 pages. https:
//doi.org/10.1145/3551349.3560505

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2999

https://doi.org/10.1109/MCI.2019.2919363
https://arxiv.org/abs/2310.17219
https://arxiv.org/abs/2310.17219
https://doi.org/10.1109/IIAI-AAI50415.2020.00107
https://arxiv.org/abs/2104.04258
https://doi.org/10.1109/AINA.2018.00122
https://doi.org/10.1145/3551349.3560505
https://doi.org/10.1145/3551349.3560505

	Abstract
	1 Introduction
	2 The Tool
	3 Integration
	4 Experiments
	5 Conclusions
	Acknowledgments
	References

