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ABSTRACT
The global push toward renewable energy has accelerated the forma-
tion of energy communities, where households produce and share
electricity locally to reduce grid strain and promote sustainability.
Regulators and researchers are still exploring optimal energy ex-
change mechanisms. However, communities often decide how they
will exchange energy themselves, even though many lack the infor-
mation and tools needed to make informed decisions. To address
these challenges, we introduce a JAX-accelerated simulation-based
framework that allows researchers to prototype and evaluate di-
verse energy exchange models under realistic conditions. On top of
this framework, we present an interactive demonstration targeted at
legislators, citizens, and other non-technical stakeholders, offering
an intuitive introduction to foundational concepts and a hands-on
environment for experimenting with different community setups
and exchange mechanisms. The project website is available here.
Beyond technology, our work is grounded in an interdisciplinary
project integrating legal analysis, social science research, and public
engagement via citizen jury sessions. By bridging these domains,
we aim to empower communities and decision-makers to make
more informed, equitable choices in transitioning to sustainable
energy systems.
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1 INTRODUCTION
The global transition to renewable energy sources and decentral-
ized energy production is driven by the urgent need to address
climate change. This transition is characterized by different initia-
tives worldwide, such as the Community Choice Aggregation (CCA)
[11] in the U.S., microgrid programs in China [7] and Australia [6],
and energy communities in the European Union [8]. Localized en-
ergy communities, where users produce and share local renewable
electricity, accelerate the shift toward clean energy sources while
maintaining grid stability and resilience. Despite legal frameworks
and regulatory directives promoting decentralization, the exact
methods of exchanging energy locally are frequently left in the
hands of the communities, many of whom lack the information
needed to make fully informed decisions [8]. To address this, we
have developed an interactive and user-friendly demonstration
that aims to simplify these complex issues, providing citizens with
insights to make informed decisions about their energy exchanges.

The widespread adoption of solar panels and smart meters en-
able new opportunities for energy communities. Across Europe,
renewable energy overproduction often creates surpluses that can-
not be injected into the grid, sometimes even forcing producers to
pay for surplus energy. This highlights the urgent need for demand
flexibility and local balancing strategies [12]. Energy communities
can provide this flexibility by exchanging surplus energy locally,
limiting the strain on the existing grid infrastructure and energy
markets. However, coordinating such exchanges is complex, as re-
newable energy production and consumption patterns can vary
dramatically, often on timescales as short as 15 minutes, making
manual oversight impractical [10]. Fixed prices are likewise inade-
quate, as they do not reflect the actual cost of energy production
[12]. By employing AI-driven agents that continuously monitor and
adapt to real-time conditions, communities can allocate resources
more efficiently and adjust pricing fairly.

To deal with this complexity, we have developed a JAX hardware-
accelerated simulation-based framework. This framework provides
mechanism design researchers with the tools to test and refine en-
ergy exchange models under diverse conditions. Additionally, our
interactive and user-friendly demonstration is accessible to legisla-
tors, citizens, and individuals without coding experience. Within
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the framework, each household in an energy community is repre-
sented by an AI agent, allowing for controlled experimentation with
diverse and heterogeneous agent populations and energy exchange
mechanisms. Our work is rooted in an interdisciplinary project in-
tegrating in-depth legal analysis of relevant regulations and norms
with social science research on citizens’ values and principles.

2 TECHNOLOGY
2.1 Simulation-Based Framework
Our simulation-based framework leverages JAX [3], a high-performance
numerical computing library for Python, to enable rapid prototyp-
ing, training, and evaluation of AI-driven agents in diverse en-
ergy communities. Additionally, our framework aligns with well-
established APIs and standards from the multi-agent reinforcement
learning (MARL) community [14], benefiting from novel algorithms
and advances in the broader MARL community while contributing
to a growing ecosystem of JAX-accelerated MARL environments
[2, 4, 5, 9, 14]. Finally, as outlined in the following subsections, our
standardized APIs further simplify the introduction of new agent
models and exchange mechanisms, encouraging ongoing research
into efficient and fair local energy-sharing strategies.

2.1.1 Energy Profiles. Our framework provides diverse data sources
and generation methods to study energy exchange mechanisms
that are robust, fair, and effective across a spectrum of real-world
energy community configurations. Firstly, we integrate existing
benchmark datasets such as CityLearn [10, 16], which are widely
used in the MARL community, and offer realistic electricity con-
sumption and production patterns. However, since predefined sce-
narios may not always capture the specific conditions or challenges
of a particular community, we incorporate flexible data genera-
tion tools such as PVLib [1] and ANTgen [13]. PVLib enables the
creation of synthetic solar production profiles, allowing users to
simulate anything from urban neighborhoods with limited rooftop
space to rural communities where each household can host its
own photovoltaic system. Similarly, ANTgen offers an approach
for modeling household consumption, varying occupant schedules,
and appliance usage to reflect diverse lifestyles and building types.
Our framework also supports user-provided data.

2.1.2 Agent Modelling. Each household is represented as an AI-
driven agent whose decisions depend on the underlying production
and consumption patterns. To capture the complexity and diver-
sity of real-world energy communities, our framework supports
heterogeneous agent populations. In terms of sophistication, some
agents rely on simple, rule-based strategies, while others employ
reinforcement learning methods—such as Q-Learning [17] or Prox-
imal Policy Optimization (PPO) [15], to dynamically adapt their
behavior over time. These differences in decision-making complex-
ity allow us to investigate how easily less sophisticated agents can
be disadvantaged or outperformed under different energy exchange
mechanisms. In addition to their decision-making strategies, agents
can also differ in their technological resources. While some may
have solar installations, battery storage systems, or both, others
rely entirely on external sources. Finally, agents can pursue differ-
ent goals, from maximizing individual profits to achieving greater

self-consumption or promoting community-wide stability and sus-
tainability.

2.1.3 Exchange Mechanisms. Our framework includes multiple
exchange mechanisms that define how agents trade energy. To
measure the added value of such energy community-driven ex-
changes, we include a simple baseline scenario in which no local
exchange occurs. This reference point highlights the differences in
cost, efficiency, and fairness that emerge once agents start trading
energy among themselves. Building on this baseline, we offer a dou-
ble auction market and an agent-based pricing system. The double
auction mechanism, a well-known approach in electricity markets,
requires participants to submit bids to buy and offers to sell en-
ergy, with a central clearing process matching them to determine
final trade volumes and prices. In contrast, the agent-based pricing
mechanism employs a specialized reinforcement learning agent
to dynamically adjust the community’s energy price in real-time,
responding to fluctuations in supply and demand. Additionally,
our framework features a standardized API for integrating new
mechanisms to support further mechanism design research.

2.2 Demonstration
While the simulation-based framework targets mechanism design
researchers, the accompanying demonstration provides a user-
friendly interface targeting a broader audience, including citizens,
community organizers, and policymakers. It simplifies the under-
lying concepts, enabling non-experts to understand local energy
exchanges, explore the implications of different setups, and make
informed decisions about their own contexts. The demo is a web
app containing several parts, the first introduces key concepts using
interactive visualizations and examples. Secondly, they can test sev-
eral scenarios, starting at the household level, adjusting parameters
such as occupancy patterns, daily routines, or seasonal variations.
As they change these inputs, the plots update in real time, illus-
trating how energy consumption and production fluctuate with
lifestyle choices or seasonalities. Building on these insights, the
demonstration then focuses on entire energy communities, where
multiple households pool their resources and interact through local
energy exchange mechanisms. Users can create their own energy
communities by choosing the exchange mechanisms and popu-
lating them with agents of differing capabilities, objectives, and
sophistication. They can use predefined datasets, generate synthetic
profiles, or upload their own data to ground exploration in locally
relevant and realistic contexts. As they modify configurations and
rerun simulations, users observe how the chosen rules shape the
outcomes of cost, efficiency, and fairness. By presenting complex
ideas incrementally and allowing participants to interact with the
system in real-time, the demonstration offers a hands-on, accessible
platform.
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