
Orpheus: Programming Protocol-Based BDI Agents
Demonstration Track

Matteo Baldoni
University of Turin

Turin, Italy
matteo.baldoni@unito.it

Samuel H. Christie V
North Carolina State University

Raleigh, NC, USA
schrist@ncsu.edu

Munindar P. Singh
North Carolina State University

Raleigh, NC, USA
mpsingh@ncsu.edu

Amit K. Chopra
Lancaster University

Lancaster, United Kingdom
amit.chopra@lancaster.ac.uk

ABSTRACT
We demonstrate Orpheus, a novel programming model for engi-
neering BDI agents that communicate on the basis of protocols.
In Orpheus, protocols are specified in BSPL and agents are imple-
mented in Jason. Given a protocol, Orpheus tooling generates a
Jason adapter that exposes a simple interface for sending messages
based on protocol state. Orpheus shines in the implementation of
flexible, loosely-coupled agents, long a challenge for BDI-based
agent programming approaches.
Demonstration video: https://di.unito.it/orpheusvid

CCS CONCEPTS
• Computing methodologies → Multi-agent systems.

KEYWORDS
Information Protocols; BDI; Agent Programming
ACM Reference Format:
Matteo Baldoni, Samuel H. Christie V, Munindar P. Singh, and Amit K.
Chopra. 2025. Orpheus: Programming Protocol-Based BDI Agents : Demon-
stration Track. In Proc. of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May
19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
Michael Winikoff [14] highlighted two shortcomings in agent-
oriented programming languages (AOPLs). One, despite the im-
portance of modeling interactions in multiagent systems (MAS),
AOPLs supported little more than primitives for sending and re-
ceiving messages. He saw such primitives as transferring control
between agents in an unstructured manner and drew an unflat-
tering analogy with gotos. Two, interaction protocols, typically ex-
pressed in notations such as AUML [8], were message-centric and
overconstrained the interactions between agents. With the aim
of supporting robustness and flexibility in interactions, Winikoff
advocated higher-level communication abstractions. More than a
decade later, AOPLs have hardly changed.

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

We recently developed Orpheus, a programming model for mul-
tiagent systems [1] that shows how to overcome the limitations
pointed out by Winikoff. Orpheus adopts information protocols
expressed in the Blindingly Simple Protocol Language (BSPL) [9],
which boasts formal semantics and verification tools [10, 11] and
programming models [6, 7]. BSPL is a declarative and asynchronous
model for flexible interactions between agents [3].

Orpheus overcomes shortcomings of message-centric interaction
protocols, such as incompatibilities between agents due to the mes-
sage schemas being blended into business logic; semantic errors due
to a lack of a formal model; and inflexibility due to the programmer
having to maintain the protocol state via a state machine. Orpheus
is grounded on Jason [12], to fully exploit the agents’ cognitive au-
tonomy through the agent’s goals, beliefs, and intentions. Moreover,
it fully exploits the agent’s social autonomy through the adoption of
information protocols. Orpheus tooling generates plan and query
libraries that facilitate implementing agents by tracking state and
for computing enabled (legal to emit) messages at runtime.

2 TOOLING
In Orpheus, agent logic is organized according to what messages are
enabled to be sent. A protocol specifies roles and message schemas.
A message schema has a name, a sender and a receiver role, and one
or more parameters, including some designated ⌜key⌝. A message
instance is a tuple of bindings for the parameters of that schema
that are adorned either ⌜in⌝ or ⌜out⌝. The ⌜key⌝ parameters of
a schema form a composite key and uniquify its instances. An
message instance is enabled when its ⌜in⌝ parameters are bound
(their bindings are known); and its ⌜out⌝ parameters are unbound
(they are not known). A role knows bindings for some parameters if
it has sent or received messages with bindings for those parameters.

An agent uses beliefs to encode its view of the protocol state,
called local state in Orpheus. An incoming message is added to
the local state if it is consistent with the state, i.e., if no other
binding is already known for any its parameters (relative to the
key). For outgoing messages an attempt to send is successful if the
completed messages are mutually consistent in their bindings; the
sent messages are added to the local state. Moreover, an agent
has a set of role-specific queries and plans that are automatically
generated by the Orpheus Tool and they constitute the role adapter
in Orpheus. The queries are used for computing enabled messages.
The plans validate messages before emission and upon reception.

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3006

https://orcid.org/0000-0002-9294-0408
https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0003-4629-7594
https://di.unito.it/orpheusvid
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Role adapters encapsulate all uses of send and receive primitives
and in that constitute a higher-level communication abstraction.
An agent programmer uses the adapter to define the internal logic
of the agent, as Winikoff wished for AOPLs. Listing 1 illustrates
BSPL via our running example.

Listing 1: Initial Contract Net Protocol.
1 C o n t r a c t N e t {
2 r o l e C , P
3 parameter out IDt key , out task , out outcome
4 p r i v a t e pde c i s i on , o f f e r , outcome
5 C −> P : c f p [out IDp key , out IDt key , out t a sk]
6 P −> C : propose [i n IDp key , i n IDt key , i n task ,

out o f f e r , out p d e c i s i o n]
7 P −> C : r e f u s e [i n IDp key , i n IDt key , i n task , out

outcome , out p d e c i s i o n]
8 C −> P : a c cep t_p rop [i n IDp key , i n IDt key , i n

o f f e r , out accept , out x]
9 C −> P : r e j e c t _ p r o p [i n IDp key , i n IDt key , i n

o f f e r , out outcome , out x]
10 P −> C : done [i n IDp key , i n IDt key , i n accept , out

outcome]
11 P −> C : f a i l u r e [i n IDp key , i n IDt key , i n accept ,

out outcome] }

Since bindings are introduced through ⌜out⌝ parameters, no two
message instances may have overlapping key parameter bindings
as well as a binding of the same ⌜out⌝ parameter. So, for instance,
there will not be two cfp instances with the same value for IDp
but with different bindings for task. Moreover, there will not be an
instance of accept_prop and one of reject_prop for the same pair IDp
and IDt, because they should both bind x.

BSPL thus captures causality and integrity through information.
Instead of reacting to message receptions, to achieve its goal, the
agent queries for enabled instances of the messages it may send.
These enabled instances are incomplete and the agent must provide
bindings for their ⌜out⌝ parameters so they can be sent. It may
choose to complete some of the enabled messages by producing
those bindings and attempting to send them in one shot. The sent
messages are added to the local state. A message may be received
at any time, obviating the need for ordered-delivery infrastructure.

The Orpheus Tool is implemented in Java. It takes as input a BSPL
protocol and produces a role adapter for each role in the protocol,
as Figure 1 shows. The video shows how agents are implemented.

3 IMPLEMENTING AGENTS
Using Orpheus, programmers of Jason agents focus not on reactions
to incoming messages, but the enabled messages the agent may
send, abstracting out reasoning about the protocol into automatic
generated code. To achieve some goal, the agent:

(1) queries if there are enabled instances corresponding to the
message it wants to send (Listing 2, lines 2 and 7;

(2) completes them by producing bindings for their ⌜out⌝ pa-
rameters (Listing 2, lines 4 and 11; and

(3) attempts to send them in one shot (Listing 2, lines 5 and 12.

For instance, in Listing 2, first, the agent checks if cfp is enabled,
then, it completes the message by binding the out parameters, fi-
nally, it attempts to send the message. For assigning the contract,
the agent checks for all the enabled accept_prop messages. It looks

Internal Logic

Compute Enabled Messages

Update Local State: Emission

Update Local State: Reception

Attempt Emission

Internal State

Local State

Reasoning

Queries

Plans

Beliefs

Agent Implemented via Orpheus

Orpheus Tool

Protocol in BSPL

MAS Specification

Communication Service

Figure 1: The Orpheus Tool.

for the best one, then, by announce_result, it selects the accept to
be sent accordingly and sends rejects of all other proposals.

Listing 2: An excerpt of the contractor in the CNP.
1 + ! c f p (Id t , Task)
2 : enab l ed (c f p (out , out , out) [r e c e i v e r (out)])
3 <− f o r (p a r t i c i p a n t (P)) {
4 ! comple te (c f p (Idp , I d t , Task) [r e c e i v e r (P)]) ;
5 ! a t tempt (c f p (Idp , I d t , Task) [r e c e i v e r (P)]) ; } .
6 + ! c o n t r a c t (I d t)
7 <− . f i n d a l l (o f f e r (Of fe r , Idp , P) , enab led (a c cep t_p rop (

Idp , Id t , Of fe r , out , out) [r e c e i v e r (P)]) , L) ;
8 L \== [] ; . min (L , o f f e r (WOffer , WIdp , WAg)) ;
9 ! a nnounce_ r e su l t (I d t , L , WIdp , WAg) .
10 + ! announce_ r e su l t (I d t , [o f f e r (Of fe r , WIdp , WAg) | T] ,

WIdp , WAg)
11 <− ! comple te (a c cep t_p rop (WIdp , Id t , Of fe r , Accept , X) [

r e c e i v e r (WAg)]) ;
12 ! a t tempt (a c cep t_p rop (WIdp , Id t , Of fe r , Accept , X) [

r e c e i v e r (WAg)]) ;
13 ! a nnounce_ r e su l t (I d t , T , WIdp , WAg) .

4 CONCLUSIONS
We demonstrate Orpheus, whose value proposition to engineering
MAS lies in enabling the implementation of loosely-coupled, flex-
ible agents via high-level communication abstractions. Orpheus
simplifies changes to agent decision making and to protocols. By
using protocols, it supports the implementation of MAS on fully
asynchronous communication services, multiparty (more than two)
interactions, and multiple concurrent instances of a protocol. In [2],
we discuss Azorus, a programming model for multiagent systems
that combines cognitive abstractions with BSPL. In particular, we
capture the meaning of interaction via a specification of commit-
ments [3–5, 13, 15] and the operational constraints on interaction
via BSPL [6, 7, 9–11].

5 RESOURCES
Source code is available at https://di.unito.it/orpheus.

ACKNOWLEDGMENTS
Thanks to the NSF (grant IIS-1908374).

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3007

https://di.unito.it/orpheus

REFERENCES
[1] Matteo Baldoni, Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra.

2025. Orpheus: Engineering Multiagent Systems via Communicating Agents. In
Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI). AAAI,
Philadelphia, 1–9.

[2] Amit K. Chopra, Matteo Baldoni, Samuel H. Christie V, and Munindar P. Singh.
2025. Azorus: Commitments over Protocols for BDI Agents. In Proceedings of
the 24th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). IFAAMAS, Detroit.

[3] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalu-
ation of Communication Protocol Languages for Engineering Multiagent Sys-
tems. Journal of Artificial Intelligence Research (JAIR) 69 (Dec. 2020), 1351–1393.
https://doi.org/10.1613/jair.1.12212

[4] Amit K. Chopra and Munindar P. Singh. 2015. Cupid: Commitments in Relational
Algebra. In Proceedings of the 29th Conference on Artificial Intelligence (AAAI).
AAAI Press, Austin, Texas, 2052–2059. https://doi.org/10.1609/aaai.v29i1.9443

[5] Amit K. Chopra and Munindar P. Singh. 2016. Custard: Computing Norm States
over Information Stores. In Proceedings of the 15th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS). IFAAMAS, Singapore,
1096–1105. https://doi.org/10.5555/2936924.2937085

[6] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Mandrake:
Multiagent Systems as a Basis for Programming Fault-Tolerant Decentralized
Applications. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS)
36, 1, Article 16 (April 2022), 30 pages. https://doi.org/10.1007/s10458-021-09540-
8

[7] Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra. 2023. Kiko:
Programming Agents to Enact Interaction Protocols. In Proceedings of the 22nd
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, London, 1154–1163. https://doi.org/10.5555/3545946.3598758

[8] Marc-Philippe Huget and James Odell. 2004. Representing Agent Interaction
Protocols with Agent UML. In Proceedings of the 5th International Workshop on
Agent-Oriented Software Engineering (AOSE) (Lecture Notes in Computer Science,
Vol. 3382). Springer, New York, 16–30. https://doi.org/10.1007/978-3-540-30578-
1_2

[9] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Taipei, 491–498. https://doi.org/10.5555/2031678.2031687

[10] Munindar P. Singh. 2012. Semantics and Verification of Information-Based
Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.
https://doi.org/10.5555/2343776.2343861

[11] Munindar P. Singh and Samuel H. Christie V. 2021. Tango: Declarative Semantics
for Multiagent Communication Protocols. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI). IJCAI, Online, 391–397. https:
//doi.org/10.24963/ijcai.2021/55

[12] Renata Vieira, Álvaro F. Moreira, Michael J. Wooldridge, and Rafael H. Bordini.
2007. On the Formal Semantics of Speech-Act Based Communication in an Agent-
Oriented Programming Language. Journal of Artificial Intelligence Research (JAIR)
29 (June 2007), 221–267. https://doi.org/10.1613/jair.2221

[13] Michael Winikoff. 2007. Implementing Commitment-based Interactions. In Pro-
ceedings of the 6th International Conference on Autonomous Agents and Multiagent
Systems. 1–8.

[14] Michael Winikoff. 2012. Challenges and Directions for Engineering Multi-Agent
Systems. CoRR abs/1209.1428 (2012), 12 pages.

[15] Pınar Yolum and Munindar P. Singh. 2002. Flexible Protocol Specification and
Execution: Applying Event Calculus Planning using Commitments. In Proceedings
of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS). ACM Press, Bologna, 527–534. https://doi.org/10.1145/544862.
544867

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3008

https://doi.org/10.1613/jair.1.12212
https://doi.org/10.1609/aaai.v29i1.9443
https://doi.org/10.5555/2936924.2937085
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.5555/3545946.3598758
https://doi.org/10.1007/978-3-540-30578-1_2
https://doi.org/10.1007/978-3-540-30578-1_2
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.5555/2343776.2343861
https://doi.org/10.24963/ijcai.2021/55
https://doi.org/10.24963/ijcai.2021/55
https://doi.org/10.1613/jair.2221
https://doi.org/10.1145/544862.544867
https://doi.org/10.1145/544862.544867

	Abstract
	1 Introduction
	2 Tooling
	3 Implementing Agents
	4 Conclusions
	5 Resources
	Acknowledgments
	References

