
BitML2MCMAS: Strategic Reasoning for Bitcoin Smart Contracts
Demonstration Track

Luigi Bellomarini
Bank of Italy
Rome, Italy

luigi.bellomarini@bancaditalia.it

Marco Favorito
Bank of Italy
Rome, Italy

marco.favorito@bancaditalia.it

Giuseppe Galano
Bank of Italy
Rome, Italy

giuseppe.galano2@bancaditalia.it

ABSTRACT

We present BitML2MCMAS, a formal verification tool for analyz-
ing Bitcoin smart contracts, when specified in BitML, through Atl
model checking using theMCMAS model checker. We developed a
translation procedure from a BitML contract to anMCMAS model
that simulates the BitML semantics, allowing for strategic reason-
ing on BitML smart contracts. We tested our tool over several case
studies, showing that we can verify smart contract specifications
that capture interesting multi-agent strategic interactions.

KEYWORDS

Bitcoin Smart Contracts; Strategic reasoning; Atl model checking

ACM Reference Format:

Luigi Bellomarini, Marco Favorito, andGiuseppeGalano. 2025. BitML2MCMAS:
Strategic Reasoning for Bitcoin Smart Contracts: Demonstration Track. In
Proc. of the 24th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025,
IFAAMAS, 3 pages.

1 INTRODUCTION

The increasing popularity of Distributed Ledger Technologies (DLTs),
such as Bitcoin [20] and Ethereum [13], and the adoption of smart
contracts [25], highlighted the need for formal verification methods
that check whether smart contracts behave as expected [17, 26],
both at implementation level and design level. For example, with
model checking [15], we can automatically explore the state space
of a model of the smart contract to check all possible states and
transitions against the desired specifications of its functioning. The
most used specification languages are Computational Tree Logic
(Ctl) [14] and Linear-time Temporal Logic (Ltl) [22, 23]. However,
the underlying assumption of most tools for smart contracts is that,
at any time, any participant can do any permissible action. While
this assumption makes sense when we aim to detect violations of
the specifications across the entire state space, it provides little in-
sight into the strategic abilities of participants, e.g., which outcome
can be enforced or prevented by a single user or coalition [9].

On the other hand, Atl (Alternating-time Temporal Logic) [5] is a
temporal logic that can model game properties betweenmulti-agent
systems [24, 27], and for which themodel checking problem is decid-
able. In particular, it supports path quantifiers ⎷A⌄𝜑 , meaning that
coalition 𝐴 has a strategy to enforce 𝜑 to hold on all paths. We can

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

BitML
Contract

Atl
specifications

BitML2MCMAS ISPL file MCMAS Verification
result

Figure 1: Tool workflow.

use this expressive power to check relevant strategic properties of
smart contracts, e.g., whether a participant/coalition can withdraw
a certain amount of funds regardless of the behavior of the other
participants or whether a participant/coalition can prevent others’
course of action. In a recent work [11], we proposed a technique
to perform Atl model checking on Bitcoin smart contracts when
they are specified in the BitML domain-specific language [10]. The
approach works by constructing a turn-based asynchronous concur-
rent game structure (CGS) [5] that can simulate the semantics of
the BitML contract. By imposing certain restrictions on the input
contract and by suitably abstracting the semantics, we can keep
the state-space of the game finite and so maintain the decidability
of the model-checking problem.

In this paper, we present BitML2MCMAS, a prototype tool for
performing Atl model checking of a BitML smart contract. The
software takes in input a BitML contract, specified in the BitML
DSL [8], and a set of Atl specifications to verify, and outputs a
program in the Interpreted System Programming Language (ISPL)
[1], that can simulate any behavior of the participants interacting
with the BitML contract. The translation rules are described in
[12], which are designed for the ISPL language instead of the CGS
model formalism as in [11]. Then, the generated program can be
given in input toMCMAS [18], an efficient model checker for multi-
agent systems, to verify the target Atl specifications. A high-level
diagram of the just described tool workflow is shown in Figure 1.
This is the URL to the demonstration video: https://drive.google.
com/file/d/14cWDwtoJT9xkLvd6GoGL6Ie8koqPHI44.
Related works. The BitML toolchain [8] allows the verification of
various forms of liquidity properties and Ltl specifications, with
the possibility to fix participant strategies beforehand. Nam and Kil
[21] propose a technique to translate an Ethereum smart contract
written in a subset of the Solidity language into ISPL and then use
MCMAS to verify certain Atl specifications for two-player games.
Andrychowicz et al. [7] use Timed Automata to model Bitcoin smart
contracts, which are specified in the Uppaal model checker [16]
that can verify specifications in Timed Computation Tree Logic. In
all cases, either they do not support strategic reasoning as in Atl
model checking, or the focus is not on Bitcoin contracts.

2 BITML IN A NUTSHELL

BitML [10] is a domain-specific language and calculus for Bitcoin
smart contracts, which allows a set of participants to exchange

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3012

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://drive.google.com/file/d/14cWDwtoJT9xkLvd6GoGL6Ie8koqPHI44
https://drive.google.com/file/d/14cWDwtoJT9xkLvd6GoGL6Ie8koqPHI44

(participant "A" "ce6b ... ef66 ") ; A's public key
(participant "B" "e0bb ...6 eb1 ") ; B's public key

(contract
(pre

(deposit "A" 1 "f0b0 ...3 e17@0 ") ; tx output (1 BTC)
(secret "A" a "b39e ... b745 ") ; hash of A's secret
(deposit "B" 1 "5346... a079@2 ") ; tx output (1 BTC)
(secret "B" b "c0c3 ... f752 ")) ; hash of B's secret

(choice
(reveal (a) (choice

(reveal (b) (split
(1 -> (withdraw "A"))
(1 -> (withdraw "B"))))

(after 10 (withdraw "A"))))
(after 5 (withdraw "B"))))

Figure 2: Specification of themutual timed commitment con-
tract in the DSL of BitML.

cryptocurrency according to pre-agreed contract rules. A BitML
contract specification is made of two components: the preconditions,
describing requirements that participants must fulfill to stipulate
the contract and the actual contract that specifies the rules to trans-
fer bitcoins (B). For example, consider the BitML formalization of
a mutual-timed commitment contract [6], shown in Figure 2. Intu-
itively, the contract works as follows: we have two participants, A
and B, each one choosing a secret and depositing 1B of cryptocur-
rency. The goal of the contract is to ensure that each participant
will either learn the other participant’s secret or receive the other
participant’s deposit as compensation. The contract gives the par-
ticipants some time to reveal their secrets. If a participant reveals
his secret in time, then he can get her deposit back; otherwise,
after the timeout expires, the other participant can withdraw his
penalty. The pre section defines the contract preconditions (e.g.,
deposits that participants hold and secrets they must commit to).
The contract section specifies the contract logic: in the example,
the first choice operator defines two mutually exclusive alterna-
tive branches: one in which A reveals his secret a, and the other
where the first timeout expires, in which case B can withdraw all
the funds (his B plus A’s penalty); the second choice is analogous
to the first one but with the roles exchanged. In case also secret b is
revealed by B, the contract funds are split into equal parts, and both
participants can recover their original funds. A full specification of
the BitML syntax and semantics can be found in [10].

3 TRANSLATION IN ISPL AND VERIFICATION

BitML2MCMAS takes in input a BitML specification (as the one
in Figure 2) and a set of Atl specifications and produces the ISPL
model of the BitML contract, according to the approach presented
in [12]. Due to lack of space, we cannot fully detail each translation
rule, but in a nutshell, the translation is structured as follows: (a)
in the ISPL file, the behavior of the BitML contract is managed by
the Environment agent, while each contract participant Pi is asso-
ciated with agent Agent_Pi of the ISPL program; (b) at each step,
the environment nondeterministically chooses (i.e., “schedules”)
an agent whose action is the only one that takes effect to deter-
mine the next state. This turn-based asynchronous pattern is used
to simulate the concurrency of the BitML calculus rules; (c) the
global time is incremented by the environment, but only if all agents
agree, so to prevent unfair executions (d) The BitML semantics
(deposits, secret commitments, contract execution, etc.) are encoded
in ISPL by means of agents’ state variables, protocols, and evolution

rules. (e) evaluation rules defining the propositions of the Atl spec-
ifications, e.g. part_A_total_deposits_is_at_least_1, time-
out_1_expired, private_secret_a_is_invalid, etc. Other cus-
tom evaluations must be explicitly provided.

Once the ISPL file has been produced, we can use MCMAS to
verify the target Atl specifications. The Atl semantics to use must
include (i) the handling of fairness constraints for ensuring fair
scheduling of participants, and (ii) the handling of imperfect infor-
mation to treat the secret commitment and revealment mechanism.
This means that, when calling MCMAS, we must provide the op-
tion ––atlk 2. In case we can assume perfect information, we can
provide the option ––atlk 1, often resulting in faster verification.

4 IMPLEMENTATION

The prototype tool BitML2MCMAS is written in Python and pub-
lished open-source on GitHub [19]. The Python library provides
the following features: (a) parser for the Lisp-like DSL for BitML
contracts using the Lark parsing toolkit [2]; (b) programmatic defini-
tion of BitML contracts by following an object-oriented paradigm;
(c) creation and manipulation of ISPL programs, with functionality
to export them into ISPL program files compatible withMCMAS;
this module could be of independent interest toMCMAS users and
to the MAS community; (d) the BitML-to-ISPL translation rules of
the previous section.

Figure 1 shows the workflow of usage of our tool. First, we can
use the API of the Python library BitML2MCMAS to generate an
ISPL file that models the BitML contract as a multi-agent system,
plus the Atl specification to verify. Then, the generated ISPL file
can be given as input to the MCMAS model checker. We inherit
several additional functionalities by using MCMAS, including: (a)
simulation of the BitML contract via the ISPL model; (b) generation
of counterexamples/witnesses; (c) visualization of the model.

5 DEMONSTRATION

In the demonstration video, we walk through a tutorial [4] where
we showcase the features of the tool and provide an overview of
the verification process for interesting Atl specifications on the
mutual timed commitment contract, all of which hold true:
• If participant A publishes an invalid commit, then he cannot
recover his funds:
AG((private_secret_a_is_invalid) ->

!<Agent_A> F(part_A_total_deposits_at_least_1))
• If the first timeout has expired and commitment for secret a
is invalid, then B can recover his funds plus A’s penalty without
revealing its secret b:
AG((!public_secret_b_is_valid and timeout_1_expired

and private_secret_a_is_invalid)
-> <Agent_B>F(part_B_total_deposits_is_at_least_2

and !public_secret_b_is_valid))
• If participant B commits to his secret and the first timeout has
not expired yet, then it is guaranteed that B always has a strategy
to take at least 1B:
AG((contract_is_initialized and !timeout_1_expired

and private_secret_b_is_valid)
-> <Agent_B>F(part_B_total_deposits_is_at_least_1))

We also prepared a tutorial [3] with other case studies implemented
in our tool (e.g., an escrow contract and a zero-coupon bond).

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3013

REFERENCES

[1] 2015. MCMAS v1.2.2: User Manual.
[2] 2017. lark-parser/lark. https://github.com/lark-parser/lark
[3] 2025. More contracts - BitML2MCMAS. https://marcofavorito.github.io/

bitml2mcmas/tutorial/
[4] 2025. Tutorial: Mutual Timed Commitment Contract - BitML2MCMAS. https:

//marcofavorito.github.io/bitml2mcmas/mutual-timed-commitment-tutorial/
[5] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time

temporal logic. J. ACM 49, 5 (2002), 672–713.
[6] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz

Mazurek. 2014. Fair Two-Party Computations via Bitcoin Deposits. In Financial
Cryptography Workshops (Lecture Notes in Computer Science, Vol. 8438). Springer,
105–121.

[7] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. 2014. Modeling Bitcoin Contracts by Timed Automata. In FORMATS
(LNCS, Vol. 8711). Springer, 7–22.

[8] Nicola Atzei, Massimo Bartoletti, Stefano Lande, Nobuko Yoshida, and Roberto
Zunino. 2019. Developing secure bitcoin contracts with BitML. In ESEC/SIGSOFT
FSE. ACM, 1124–1128.

[9] Massimo Bartoletti. 2020. Smart Contracts Contracts. Frontiers Blockchain 3
(2020), 27.

[10] Massimo Bartoletti and Roberto Zunino. 2018. BitML: A Calculus for Bitcoin
Smart Contracts. In CCS. ACM, 83–100.

[11] Luigi Bellomarini, Marco Favorito, and Giuseppe Galano. 2024. Strategic Rea-
soning for BitML Smart Contracts. In 3rd Workshop on Strategies, Prediction,
Interaction, and Reasoning in Italy (SPIRIT).

[12] Luigi Bellomarini, Marco Favorito, and Giuseppe Galano. 2025. Strategic Reason-
ing of BitML Smart Contracts using the MCMAS Model Checker (to appear). In
6th Workshop on Blockchain theoRy and ApplicatIoNs. https://bit.ly/3WboLMy

[13] Vitalik Buterin. 2014. Ethereum: A Next-Generation Smart Contract and Decen-
tralized Application Platform. (2014).

[14] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. 1986. Automatic Veri-
fication of Finite-State Concurrent Systems Using Temporal Logic Specifications.
ACM Trans. Program. Lang. Syst. 8, 2 (1986), 244–263.

[15] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 2001. Model checking.
MIT Press.

[16] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a
Nutshell. Int. J. Softw. Tools Technol. Transf. 1, 1-2 (1997), 134–152.

[17] Jing Liu and Zhen-Tian Liu. 2019. A Survey on Security Verification of Blockchain
Smart Contracts. IEEE Access 7 (2019), 77894–77904.

[18] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2017. MCMAS: an open-
source model checker for the verification of multi-agent systems. Int. J. Softw.
Tools Technol. Transf. 19, 1 (2017), 9–30.

[19] marcofavorito. 2025. BitML2MCMAS. https://github.com/marcofavorito/
bitml2mcmas.

[20] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[21] Wonhong Nam and Hyunyoung Kil. 2022. Formal Verification of Blockchain

Smart Contracts via ATL Model Checking. IEEE Access 10 (2022), 8151–8162.
[22] Amir Pnueli. 1977. The Temporal Logic of Programs. In FOCS. IEEE Computer

Society, 46–57.
[23] Amir Pnueli. 1981. The Temporal Semantics of Concurrent Programs. Theor.

Comput. Sci. 13 (1981), 45–60.
[24] Yoav Shoham and Kevin Leyton-Brown. 2009. Multiagent Systems - Algorithmic,

Game-Theoretic, and Logical Foundations.
[25] Nick Szabo. 1997. Formalizing and Securing Relationships on Public Networks.

First Monday 2, 9 (1997).
[26] Palina Tolmach, Yi Li, Shangwei Lin, Yang Liu, and Zengxiang Li. 2022. A Survey

of Smart Contract Formal Specification and Verification. ACM Comput. Surv. 54,
7 (2022), 148:1–148:38.

[27] Michael J. Wooldridge. 2009. An Introduction to MultiAgent Systems.

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3014

https://github.com/lark-parser/lark
https://marcofavorito.github.io/bitml2mcmas/tutorial/
https://marcofavorito.github.io/bitml2mcmas/tutorial/
https://marcofavorito.github.io/bitml2mcmas/mutual-timed-commitment-tutorial/
https://marcofavorito.github.io/bitml2mcmas/mutual-timed-commitment-tutorial/
https://bit.ly/3WboLMy
https://github.com/marcofavorito/bitml2mcmas
https://github.com/marcofavorito/bitml2mcmas

	Abstract
	1 Introduction
	2 BitML in a Nutshell
	3 Translation in ISPL and Verification
	4 Implementation
	5 Demonstration
	References

