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ABSTRACT
Training task-oriented dialogue systems is both costly and time-
consuming, due to the need for high-quality datasets encompassing
diverse intents. Traditional methods depend on extensive human an-
notation, while recent advancements leverage large language mod-
els (LLMs) to generate synthetic data. However, these approaches
often require custom prompts or code, limiting accessibility for non-
technical users. We introduce GraphTOD, an end-to-end framework
that simplifies the generation of task-oriented dialogues. Users
can create dialogues by specifying transition graphs in JSON for-
mat. Our evaluation demonstrates that GraphTOD generates high-
quality dialogues across various domains, significantly lowering
the cost and complexity of dataset creation.
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1 INTRODUCTION
Task-Oriented Dialogue Systems (TODS) are increasingly used in
domains like customer support, personal assistants, and enterprise
solutions to help users achieve specific objectives through natural
language conversations [2, 4, 13, 18].
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Traditional TODS rely on machine learning models trained on
predefined schemas [4, 14], but they struggle with complex/nuanced
dialogues, especially when domain-specific data is scarce. In con-
trast, LLM-based TODS enable more human-like and engaging
responses [1, 2, 7, 16]. However, these systems are prone to halluci-
nations [5, 6], needing fine-tuning for specific use cases [11, 15].

Fine-tuning LLM-based TODS requires large amounts of training
data, with diverse and high-quality structures, which are costly
and time-consuming to collect [19]. A diverse dataset of realistic
dialogues is essential to allow these systems to grasp the nuances
and unique patterns of human conversation. This becomes even
more problematic when several TODS are required, each for a
different task, spanning different domains (e.g., hotel booking).

Data has previously been collected with human workers [3], this
type of dataset is particularly expensive to create even when users
are assisted by computers [8, 14]. Synthetic data generation is now
a common approach to acquire data for TODS [16, 17].

For example, SynTOD [15] proposes a new approach to model
TODS behavior using a state transition graph. However, it was
inaccessible to non-experts, as the graph and the corresponding
prompts had to be implemented manually in Python. To alleviate
this problem, we propose GraphTOD, a generalisable framework
powered by LLMs with a new state machine-based prompt that
allows non-technical users to generate task-oriented dialogues by
specifying transition graphs in JSON format. The source code and
the demo video are available on Github1 and Youtube2 respectively.

2 THE GRAPHTOD GENERATION PIPELINE
GraphTOD is based on two agents (system and user) which simulate
dialogue utterances by navigating an action transition graph (see
Figure 1). We formalize each of those elements.

An action transition graph is a tuple 𝐺 = (𝑉 ,𝐴𝑐, 𝐸, 𝑡, 𝑠, 𝑓 ),
where 𝑉 is a set of nodes, 𝐴𝑐 is a set of actions, 𝑠, 𝑓 ∈ 𝑉 are the
initial and final states, 𝐸 ⊆ (𝑉 \{𝑓 })×𝐴𝑐 is a set of available actions
1https://github.com/reecall/GraphTOD
2https://youtu.be/5pXa4yGcc58
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Figure 1: Representation of one turn of generation of the GraphTOD generation pipeline

at each non-final node, and 𝑡 : (𝑉 \ {𝑓 }) ×𝐴𝑐 → 𝑉 is the transition
function. The action transition graph serves as the link between
the two agents and can be specified quickly in JSON format.

Given an action transition graph 𝐺 , a subset of actions 𝐹 ⊆ 𝐴𝑐 ,
called function calls, are associated with APIs to obtain external
knowledge. For a node 𝑣 ∈ 𝑉 , the possible actions at 𝑣 are denoted
𝐴𝑐+𝑣 = {𝑎 ∈ 𝐴𝑐 | (𝑣, 𝑎) ∈ 𝐸}. Our pipelinemakes use of five carefully
crafted prompt templates3 denoted by 𝑝𝑖 , 1 ≤ 𝑖 ≤ 5. These prompt
templates take as input a set of parameters and return a formatted
string for an LLM. A dialogue history is 𝐻 = (𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑛),
where 𝑢2𝑗 and 𝑢2𝑗+1 represent the user’s and system’s utterances,
respectively, at time 𝑗 ≥ 0. We denote an LLM as a (possibly non-
deterministic) function 𝑙 that outputs 𝑙 (𝑥) for input 𝑥 .

The system agent is defined as 𝐴𝑠 = (𝐺, 𝐹, 𝑃𝑠 , 𝐾,𝑢1), where
𝐺 is an action transition graph, 𝐹 is a set of function calls, 𝑃𝑠 =

{𝑝1, . . . , 𝑝4} is a set of system prompt templates, 𝐾 is an agent
knowledge database initialized at ∅, and 𝑢1 is a starting utterance.
Considering a dialogue history 𝐻 = (𝑢1, 𝑢2, . . . , 𝑢2𝑗+1), a user utter-
ance𝑢2𝑗+2, and the current node 𝑣 ∈ 𝑉 , the system agent performs a
two-steps reasoning. First, 𝑝1 (𝐻,𝑢2𝑗+2, 𝐾,𝐴𝑐+𝑣 ) is used to make the
LLM detect the user’s intention. Second, depending on the detected
intention, potential APIs are triggered to collect knowledge, and
the system utterance is generated to either state that the intent was
not recognized, end the conversation, or continue the conversation
(using the corresponding prompt templates 𝑝2, 𝑝3, or 𝑝4).

The user agent is defined as 𝐴𝑢 = (𝐼 , 𝑃𝑢 ), with 𝑃𝑢 = {𝑝5} a set
of user prompt templates, and 𝐼 = (𝑎𝑔𝑒, 𝑛𝑎𝑚𝑒,𝑔𝑒𝑛𝑑𝑒𝑟, 𝑝𝑟𝑒 𝑓 𝑠) the
agent’s persona, where 𝑎𝑔𝑒 ∈ {18, 19, . . . , 80}, 𝑛𝑎𝑚𝑒 is generated
using the Faker library4, 𝑔𝑒𝑛𝑑𝑒𝑟 ∈ {𝑚𝑎𝑙𝑒, 𝑓 𝑒𝑚𝑎𝑙𝑒}, and 𝑝𝑟𝑒 𝑓 𝑠 is a
list of preferences generated based on𝐺 and can be topics or places
linked to it. For 𝑣 ∈ 𝑉 and 𝑎 ∈ 𝐴𝑐+𝑣 , the user agent uses 𝑝5 (𝑎,𝐺, 𝐻, 𝐼 )
to generate the next user utterance reflecting action 𝑎 at 𝑣 .

Example 2.1. Consider the generation of a dialogue between a
medical chatbot and a user, guided by the action transition graph of
Figure 1. At node 𝑣 = 𝐴𝑠𝑘𝐷𝑜𝑐𝑁𝑎𝑚𝑒 , the system agent initiates with

3We refer the reader to the Github repository for more details.
4https://faker.readthedocs.io/. 𝑛𝑎𝑚𝑒 is kept consistent with the agent’s 𝑔𝑒𝑛𝑑𝑒𝑟 .

𝑢5 = “Which doctor would you like to see?”. A random user inten-
tion 𝑆𝑒𝑎𝑟𝑐ℎ𝐿𝑖𝑠𝑡 ∈ 𝐴𝑐+𝑣 is selected as the next action. Based on this
intent and the user preference for female doctors (𝑝𝑟𝑒 𝑓 𝐹𝑒𝑚𝑎𝑙𝑒𝐷𝑜𝑐),
the user agent formulates the response 𝑢6 =“Could you provide the
list of female doctors?”. The system agent processes the user intent
(𝑆𝑒𝑎𝑟𝑐ℎ𝐿𝑖𝑠𝑡 ), queries the relevant API to retrieve the list of doctors,
and generates the next system utterance 𝑢7 =“The female doctors
are...”. Finally, the current node is updated to 𝑆ℎ𝑜𝑤𝐿𝑖𝑠𝑡 .

3 EVALUATION
We generated 150 conversations on 4 domain scenarios (Recipe,
Hotel, RentCar, Doctor) using GraphTOD and OpenAI’s GPT-45.
We evaluated the dialogues using 3 UniEval [20] metrics (natu-
ralness, coherence, understandability) as classic NLP metrics (e.g.,
BLEU [12] or ROUGE [10]) are insufficient to portray the difference
between advanced generation models. In Table 1, GraphTOD per-
forms consistently well overall and reports similar performances to
human-in-the-loop approaches based on LLMs such as LAPS [9].

Model - Scenario Nat. Coher. Under. Mean
(Baseline) LAPS - Recipe 0.867 0.891 0.860 0.872
(Baseline) LAPS - Movie 0.874 0.897 0.868 0.880
(Ours) GraphTOD - Recipe 0.899 0.857 0.890 0.882
(Ours) GraphTOD - Hotel 0.888 0.853 0.879 0.873
(Ours) GraphTOD - RentCar 0.887 0.768 0.878 0.844
(Ours) GraphTOD - Doctor 0.835 0.800 0.827 0.820
Table 1: Performance comparison with UniEval metrics.

4 CONCLUSION
GraphTOD is an end-to-end LLM pipeline designed to generate
high-quality task-oriented conversations by using an action transi-
tion graph and a generalized prompting approach. GraphTOD also
includes the automatic generation of user-agent preferences from
the input graph and LLM-powered intent detection, resulting in a
fully automated and fault-tolerant pipeline.
5Refer to the Github repository for the corresponding action transition graphs.
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