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ABSTRACT
We introduce an interactive Large-Value Payment System simulator
designed to explore potential blockchain-based designs via agent-
based modeling. Two hypothetical blockchain-based scenarios are
used to demonstrate the simulator’s capabilities. This tool supports
financial institutions and policymakers in assessing blockchain’s
practical applications and in making informed design decisions for
future enhancements in Large-Value Payment Systems. Our demo
video can be found at this link: http://bit.ly/4aSBpWS.
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1 INTRODUCTION
Large-Value Payment Systems (LVPSs) are critical infrastructures
for transferring high-value, priority payments between financial
institutions and supporting global financial stability [11]. Due to
their systemic importance, LVPSs are often operated or overseen by
central banks to ensure reliability, security, and robustness [6]. For
instance, during the disruptions of September 11, 2001, central bank
intervention helped prevent broader financial contagion [15]. Even
so, LVPSs remain vulnerable to payment delays from strategic bank
behavior, operational disruptions, or unintended consequences of
banks’ business models [1, 7].

Central banks continuously seek to improve LVPSs, with system
liquidity as a primary concern. Sufficient liquidity helps prevent sys-
temic issues like gridlocks and cascading failures within the finan-
cial network [3, 8]. Simulations are useful in evaluating LVPS design,
yet many models treat bank behavior as static. Given that banks act
strategically [3, 17], agent-based models (ABMs) provide valuable
insights into how these behaviors affect systemic risk. Prior work
has proposed using ABMs to model banks as strategic agents [8].
We extend this approach by also modeling key LVPS components
as agents—specifically, the Settlement Agent, Queue Agent, and
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Credit Facility Agent. Figure 1 illustrates these agent interactions.
Potential strategic behaviors include the System Agent dynami-
cally adjusting throughput rules based on historical transaction
volume, the Queue Agent determining dequeuing priority based on
some liquidity-saving mechanism algorithm, and the Credit Facility
Agent determining credit eligibility based on credit risk factors.

Figure 1: Agent Interactions for a Single Transaction

2 BLOCKCHAIN IN LVPS
Central banks are increasingly exploring wholesale Central Bank
Digital Currencies (wCBDCs) [2, 16, 20] and the application of
blockchain technology (loosely defined to include distributed ledger
technology and smart contracts) to LVPSs [19]. Blockchain offers
potential enhancements to payment systems through features like
decentralization, transparency, and improved security. However,
the discourse on exactly which blockchain features can most benefit
LVPSs is just beginning to emerge.

Blockchain technology can alter information dynamics within
financial systems, influencing agents’ actions and strategies [5].
It enables validation of agents’ claims through transparent and
immutable transaction records [9]. Additionally, smart contracts
can facilitate delivery-versus-payment (DvP) processes, automat-
ing settlements and reducing counterparty risk [4]. In this paper,
we identify potential blockchain implementations in LVPSs and
demonstrate how they can be simulated using agent-based models.

3 THE SIMULATOR APPLICATION
3.1 Simulator Overview
We built an interactive web application using the Python Streamlit
framework, where users can create and simulate ABMs of LVPSs
by configuring the parameters and the agents’ behaviors. The ap-
plication takes the user-defined input and fits them into PSSimPy
[22], the simulator engine built for this LVPS simulation purposes.
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3.2 Demonstration of Blockchain Scenarios
We simulate two scenarios, with the transaction flow illustrated in
Figure 1, and focus on two metrics to demonstrate how the outputs
from our simulator can inform blockchain-based design considera-

tions. The Turnover Ratio [18] (
∑𝑁

𝑖=1 Payment Value𝑖
Average Intraday Liquidity ) measures

the liquidity efficiency within the system, while the Average Pay-

ment Delay [14] (
∑𝑁

𝑖=1 (Settlement Time𝑖−Start Time𝑖 )
𝑁

) evaluates system
efficiency and operational stability. In this context, the start time
typically refers to the payment submission time, making this metric
an indicator of system congestion. Alternatively, defining the start
time as the transaction arrival time would enable this metric to also
capture strategic payment delays, which could occur when a bank
decides to withhold payment despite having sufficient liquidity-a
phenomenon known as liquidity hoarding [10].

3.2.1 Scenario 1: Unification of Asset Delivery and Payment Settle-
ment Systems. In this scenario, we examine the influence on bank
behavior when blockchain’s transparency features enable targeted
penalties for payment delays.

Traditional LVPSs manage only the settlement of cash payments,
while the delivery of corresponding assets, such as securities, occurs
through separate systems. Smart contracts allow DvP to be atomic
and unified in a single system [2, 23]. Within a blockchain-based
DvP framework, the timestamps of both the asset delivery and
cash settlement are transparently recorded by the smart contract,
allowing for targeted delay penalties to be imposed on the bankwith
the cash obligation. We assume that a well-designed blockchain
infrastructure can mitigate legitimate payment delays caused by
temporary network connectivity issues [13].

In our simulation, we model delay penalties by enabling the
Settlement Agent to impose variable transaction fees. Bank Agents
incorporate expected delay penalties into their payment timing
strategies, influencing their approach to managing transaction de-
lays. From Figure 2, we see that strategic delays can be countered
if sufficient delay penalties are levied.

Figure 2: Comparison of Average Payment Delay Between
Traditional LVPS and Blockchain-Based LVPS with Targeted
Delay Costs

3.2.2 Scenario 2: Tokenizing Incoming Transactions. Here, we ex-
amine the impact on settlement delays and credit utilization when
a Credit Facility Agent accepts incoming transactions as an alter-
native form of collateral.

Blockchain technologies offer potential benefits in tokenizing
IOUs (promises to pay) [12, 21], which can be extended to LVPS

by enabling the Credit Facility to accept tokenized incoming trans-
actions from banks as collateral for intraday credit, alongside tok-
enized financial securities.

To simulate this, we design a Credit Facility Agent that functions
similarly to a traditional intraday credit facility within a collateral-
based framework but also allows for incoming transactions to serve
as collateral. The Queue Agent in this setup aims to expedite trans-
actions through the queue, subject to the constraint that the payer
bank must maintain a positive balance after initiating a settlement.
Consequently, certain transactions may experience delays if the
payer bank has insufficient funds and cannot secure the necessary
intraday credit to complete the settlement. For simplicity, we as-
sume all Bank Agents are reliable and fulfill payment obligations
on time. Figure 3 displays the combined indicator output of the
traditional and blockchain-based scenarios.

Figure 3: Comparison of Turnover Ratio and Average Pay-
ment Delay between Traditional and Blockchain-Based LVPS
Utilizing Tokenized Incoming Transactions for Intraday
Credit

Here, we observe that blockchain implementation leads to re-
duced payment delays but results in a lower Turnover Ratio over
time. This highlights the inherent trade-offs involved in design de-
cisions for blockchain-enabled LVPS and reinforces the importance
of thorough simulation-based testing to assess potential impacts
comprehensively before finalizing a blockchain system design.

4 CONCLUSION
We contribute to the study of LVPS by: (i) modeling LVPS as a mul-
tiagent system (ii) developing an interactive and customizable LVPS
simulator compatible with ABM (iii) demonstrating the potential
for blockchain applications in LVPS through configurable scenarios
in our simulator. These contributions support policymakers and
researchers to make data-driven design decisions.
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