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ABSTRACT
In this demonstration, we develop IntentRec4Maps, a system
to recognise users’ intentions in real-time interactive navigation
maps. IntentRec4Maps uses the Google Maps Platform as the real-
world interactive map, and a well-known approach for recognising
intentions in real-time. We showcase IntentRec4Maps using two
different Path-Planners and a Large Language Model (LLM).

KEYWORDS
Intention Recognition, Goal Recognition, Path Planning

ACM Reference Format:
Peijie Zhao, Zunayed Arefin, Felipe Meneguzzi, and Ramon Fraga Pereira.
2025. Intention Recognition in Real-Time Interactive Navigation Maps:
Demonstration Track. In Proc. of the 24th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan,
USA, May 19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
Real-time interactive navigation maps are integral tools in our daily
lives. Interactive maps use Global Positioning (e.g., GPS, GLONASS,
Galileo, BeiDou) to provide accurate and real-time location informa-
tion. Mobile applications use such technologies to enable users to
track their location and receive turn-by-turn directions for walking,
driving, or public transportation. Existing interactive navigation
maps include markers for various location points of interest, such
as restaurants, gas stations, hotels, etc. This helps users to plan their
routes based on their interests or needs during a journey. Interac-
tive navigation maps, such as Google Maps, Apple Maps, Waze,
MapBox, etc, require Path-Planning algorithms [3, 5, 7] (along with
heuristics) to generate optimal routes for users. This functionality
can be further enriched by integrating real-time traffic data, histor-
ical traffic patterns, and various other real-world factors that could
ensure the generation of optimal routes. Nevertheless, as far as we
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are aware, existing interactive navigation maps platforms do not
provide Real-Time Intention Recognition [8, 10, 11] for individuals.

Empowering centralised systems with the ability to recognise
the intended locations of users (either driving, walking, etc) could
be beneficial to monitor and track resources in a more effective way,
such as vehicles or personnel, packages to be delivered, etc, and is
of significant importance for logistics, fleet management, or any
scenario in which asset movement needs to be closely monitored.

IntentRec4Maps is a system able to recognise users’ intended
locations in interactive maps for real-world navigation, and uses the
Google Maps Platform for interactive navigation, as it provides use-
ful Application Programming Interfaces (API), such as Maps Embed
API, Directions API, Geocoding API, etc. IntentRec4Maps recog-
nises users’s intentions with a real-time recognition approach called
Mirroring [19]. Intention Recognition has been applied to many
distinct scenarios, such as digital games [14], recognition of culi-
nary recipes in video streams [6], decision-making advisor [17], be-
haviour explanation [2], behavioural cues for recognising intentions
[16], intention recognition in latent space images [1], and intent
recognition of pedestrians/cyclists via 2D pose estimation [4]. To
our knowledge, our system pioneers real-time intention recognition
in interactive navigation maps. We test the efficiency [20] of Inten-
tRec4Maps in complex recognition problems using two different
symbolic Path-Planners and a Large Language Model (LLM). We
showcase our system in a video on https://youtu.be/Nf8g9dxqvFw.

2 INTENTREC4MAPS
IntentRec4Maps comprises two main components (Figure 1): the
Interactive Map Platform component (Section 2.1), which relies on
the Google Maps Platform and its APIs to display the interactive
map for real-time intention recognition; and the Real-Time Inten-
tion Recognition component (Section 2.2), which performs real-time
recognition using an input information (possible intentions, obser-
vations, etc), and yields a probability distribution of the most and
least likely intentions in response to received observations.

2.1 Interactive Map Platform
We use the Google Maps Platform as the interactive map, as it pro-
vides a very robust set of APIs for real-world navigation. The envi-
ronment where IntentRec4Maps performs intention recognition

Demo Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

3062

https://creativecommons.org/corollarynses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://youtu.be/Nf8g9dxqvFw


Intention
Recogniser

Interactive Map Platform

45%

23%

22%
Probability

Ranking

Figure 1: IntentRec4Maps Overview.

is represented by the road network with location points of interest
(denoted as loc), and the state-space consists of the geographical
locations on the map. A location point is represented using lati-
tude and longitude coordinates, e.g., loc = ⟨53.483959,−2.244644⟩.
Actions consist of moving from one location point to another, fol-
lowing a specific route (or path) according to a transportation
mode (e.g., walking, driving, cycling, public transport). A route
𝜋 = {loc1, ...loc𝑛} is a sequence of latitude and longitude coordi-
nates that achieves a specific location point from an initial location
point. Our system relies on the Earth’s sphere space (defined in the
previous paragraph) to define an Intention Recognition problem in
real-world navigation maps. An Intention Recognition problem in
real-world navigation maps is a tuple ⟨M, 𝑖𝑛𝑖𝑡loc,I,𝑂𝑏𝑠⟩, where:
M is the real-world map environment, represented by a road net-
work with location points as latitude and longitude; 𝑖𝑛𝑖𝑡loc rep-
resents the initial location point as latitude and longitude; I =

{loc1, ...loc𝑛} is a set of intended location points that an observed
user may aim to achieve; and 𝑂𝑏𝑠 is a sequence of observations
(represented as latitude and longitude coordinates) that the system
observes incrementally, representing a sequence of observed coor-
dinates for achieving an intended location point loc∗ ∈ I. An “ideal
solution” is recognising (as top-1 intention in the probability rank-
ing) the intended location point loc∗ ∈ I (which is unknown from
the system’s perspective) that an observed user aims to achieve for
an observation sequence 𝑂𝑏𝑠 . We encode an Intention Recognition
problem using JSON (JavaScript Object Notation).

2.2 Real-Time Intention Recognition
IntentRec4Maps uses the well-known Mirroring [9, 19] online
recognition, a model-based recognition approach [13? ]. Vered
et al. [19] argues that we humans tend to infer other people’s inten-
tions by “mirroring” their observed behaviour with some “optimal
(ideal)” expected behaviour. We adapt Mirroring for real-world nav-
igation maps, and compute two types of routes for the observed
user, as follows. We first compute an ideal route 𝜋 from the initial
location 𝑖𝑛𝑖𝑡loc for every location point loc in the set of possible
intentions I. Afterwards, we compute what we call observation
route 𝜋𝑂𝑏𝑠 , a route that complies with the observations in 𝑂𝑏𝑠 ,
and is computed from the initial 𝑖𝑛𝑖𝑡loc complying with the obser-
vations 𝑂𝑏𝑠 and then achieving each of the possible intentions I.
Thus, for every possible intended location in I, we compare its
ideal route 𝜋 with its observation route 𝜋𝑂𝑏𝑠 and compute a score
(denoted as 𝜖). The score 𝜖 (0 ≤ 𝜖 ≤ 1) represents how “compli-
ant” (assuming optimal routes [12]) the sequence of observations
𝑂𝑏𝑠 from the agent’s behaviour is to a route 𝜋 for achieving a lo-
cation point of interest. The closer 𝜖 is to zero for location point

of interest, the .more likely such a location point interest is the
intended one. We adopt the probabilistic framework of Ramírez
and Geffner [15] to compute a posterior probability distribution
for every location point loc in I using the score 𝜖 . We formalised
it as P(𝑙𝑜𝑐 | 𝑂𝑏𝑠) = 𝜂 · P(𝑙𝑜𝑐) · P(𝑂𝑏𝑠 | 𝑙𝑜𝑐), where 𝜂 is normalisa-
tion factor, P(𝑙𝑜𝑐) is a prior probability for a location point, and
P(𝑂𝑏𝑠 | 𝑙𝑜𝑐) is the probability of the observations 𝑂𝑏𝑠 for a loca-
tion point. We compute P(𝑂𝑏𝑠 | 𝑙𝑜𝑐) using the score 𝜖 , namely,
P(𝑂𝑏𝑠 | 𝑙𝑜𝑐) = [1 + (1 − 𝜖)]−1. The computation of P(𝑂𝑏𝑠 | 𝑙𝑜𝑐)
involves comparing the routes 𝜋 and 𝜋𝑂𝑏𝑠 to compute the score 𝜖 .
Fundamentally, 𝜖 estimates the similarity between the routes 𝜋 and
𝜋𝑂𝑏𝑠 , point by point, using the Haversine Formula implemented
in the 𝜖 (𝜋, 𝜋𝑂𝑏𝑠 ) function, ensuring a geographically accurate as-
sessment of spatial separation of the points in 𝜋 and 𝜋𝑂𝑏𝑠 in the
Earth’s sphere space. We apply a threshold to determine when two
location points similar enough according to their spherical distance,
allowing for fine-tuning of the similarity comparison based on spe-
cific needs. The similarity distance comparison between the location
points in 𝜋 and 𝜋𝑂𝑏𝑠 , is denoted as (𝑙𝜋 , 𝑙𝜋𝑂𝑏𝑠

) =
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(
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where𝑅 is the spherical radius, ⟨𝑙𝑎𝑡𝜋 , 𝑙𝑜𝑛𝑔𝜋 ⟩ and ⟨𝑙𝑎𝑡𝜋𝑂𝑏𝑠

, 𝑙𝑜𝑛𝑔𝜋𝑂𝑏𝑠
⟩

correspond to the latitude and longitude coordinates for the routes
location points in 𝜋 and 𝜋𝑂𝑏𝑠 , respectively, and Δ𝑙𝑎𝑡 = |𝑙𝑎𝑡𝜋𝑂𝑏𝑠

−
𝑙𝑎𝑡𝜋 | and Δ𝑙𝑜𝑛𝑔 = |𝑙𝑜𝑛𝑔𝜋𝑂𝑏𝑠

− 𝑙𝑜𝑛𝑔𝜋 |.
We used three experimental setups and tested different ways of

extracting routes (paths) for the recognition process: (1) we use the
Google Maps Route-Planner, as a Baseline; (2) we use the MapBox
Route-Planner1; and (3) we use a LLM (i.e., ChatGPT4 API2) as a
route-planner, asking directions via prompt. The Baseline repre-
sents the IntentRec4Maps and an observed person using the same
navigation system, specifically, the Google Maps API. We use Map-
Box as an alternative navigation system for the recognition process,
making the recognition process more difficult. The rationale for
using an LLM as a route-planner is to investigate how “reliable”
an LLM is when used as a solver for a reasoning/planning process,
drawing inspiration from the work of [18].

3 CONCLUSIONS
We developed IntentRec4Maps3, a novel recognition system that
is able to recognise users’ intentions in real-time interactive navi-
gation maps. Our system employees the Haversine Formula to com-
pute distances between locations in the Earth’s sphere space. We
aim to extend IntentRec4Maps and implement other recognition
functionalities, such as dealing with irrational [12] and possibly
adversarial behaviour, and noisy and spurious observations.
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