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ABSTRACT
In this paper we introduce a novel metric, the general self-interest
level, to quantify the disparity between individual and group ratio-
nality in social dilemma games. This metric represents the maxi-
mum proportion of their individual rewards that agents can retain
while guaranteeing that a social welfare optimum is achieved.

This work provides both a tool for describing social dilemmas
and a prescriptive solution for resolving them via reward transfer
contracts. In contrast to existing metrics, the general self-interest
level can enable more efficient solutions to be found. Applications
include mechanism design, where we can assess the impact on
collective behaviour of modifications to models of environments.
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1 INTRODUCTION
Social dilemmas represent a tension between collective and individ-
ual rationality, and are characterised by agents engaging in selfish
behaviours outperforming those engaging in collective behaviours
within a group, while prosocial groups outperform selfish groups.

In our paper [5], we introduce a metric to measure the agents’
willingness to cooperate by quantifying the disparity between indi-
vidual and group incentives. In contrast to prior approaches [1–4],
we relax the requirement that all agents receive the same additional
incentives, and allow different agents to receive different incentives.
This can allow us to find more efficient solutions by exploiting the
game structure, reducing the barriers to cooperation. Furthermore,
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we use reward transfer as our mechanism, which allows us to re-
solve social dilemmas via a redistribution of the extrinsic game
rewards, without appealing to notions of intrinsic motivations such
as altruism.

2 NORMAL-FORM SOCIAL DILEMMAS
Social dilemmas are situations in which individuals face the choice
between acting selfishly (to defect) for personal gain or acting
in a prosocial manner (to cooperate) which yields greater overall
benefits to the collective. A social dilemma is characterised by, for
all agents: (i) the collective does better when an agent chooses to
cooperate than when the agent chooses to defect; (ii) each agent
may be better off individually when it defects; and, (iii) all agents
prefer mutual cooperation over mutual defection.

Consider a normal-form game (𝑁,𝐴,
⃗⃗⃗
𝑅), where each agent faces

a choice to either cooperate, 𝐶 , or defect, 𝐷 :
• 𝑁 is a finite set of 𝑛 agents, indexed by 𝑖 .
• 𝐴 = {𝐶, 𝐷} × ... × {𝐶, 𝐷}
•

⃗⃗⃗
𝑅 = (𝑅1, ..., 𝑅𝑛) where 𝑅𝑖 : 𝐴 → R is a real-valued reward
function for agent 𝑖 .

We use the sum of rewards obtained by all agents as our notion
of group good. A normal-form game is a social dilemma if, for any
action profile ⃗⃗

𝑎 ∈ 𝐴:

(i) ∀𝑖
∑︁

𝑗
𝑅 𝑗 (𝐶⌢ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑎−𝑖 ) >
∑︁

𝑗
𝑅 𝑗 (𝐷⌢ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑎−𝑖 )

(ii) ∀𝑖 ∃ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑎−𝑖 : 𝑅𝑖 (𝐷⌢ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑎−𝑖 ) > 𝑅𝑖 (𝐶⌢ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑎−𝑖 )

(iii) ∀𝑖 𝑅𝑖 ((𝐶,𝐶, · · · ,𝐶)) > 𝑅𝑖 ((𝐷, 𝐷, · · · , 𝐷))

Where ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑎−𝑖 represents the tuple of actions of all players other than

player 𝑖 , and ⌢ is a coupling operator that inserts 𝑎𝑖 into
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑎−𝑖 such

that ⃗⃗𝑎 = 𝑎⌢
𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑎−𝑖 . Prisoner’s Dilemma (Table 1a) is a classical exam-

ple of a social dilemmas. We say that a social dilemma is resolved if
an action profile that maximises social welfare is dominant.

Table 1: Prisoner’s Dilemma

(a) Before transfers

𝐶 𝐷

𝐶 3, 3 0, 4
𝐷 4, 0 1, 1

(b) After transfers

𝐶 𝐷

𝐶 3, 3 1, 3
𝐷 3, 1 1, 1
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3 GENERAL SELF-INTEREST LEVEL
We introduce a mechanism by which agents can commit to trans-
ferring proportions of their rewards to one another. By engaging in
reward transfer, an agent provides incentives for the recipients to
help it prosper which, paradoxically, can lead to a net profit for the
transferring agent if it causes a beneficial behavioural change in
the recipients. Before playing a game, the agents can commit to a
transfer scheme specified by a transfer matrix, T. The tuple of post-
transfer rewards,

⃗⃗ ⃗⃗
𝑟 ′, is given by the game rewards, ⃗⃗𝑟 , multiplied by

the transfer matrix:

⃗⃗ ⃗⃗
𝑟 ′ = T

⃗⃗
𝑟 = T =

�������
𝑡1,1 · · · 𝑡1,𝑛
.
.
.

. . .
.
.
.

𝑡𝑛,1 · · · 𝑡𝑛,𝑛

������� ©«
𝑟1
.
.
.

𝑟2

ª®®¬
Where ∀𝑖 ∀𝑗 𝑡𝑖 𝑗 ∈ [0, 1], ensuring an agent can transfer at most all
its reward to another agent, and cannot transfer a negative propor-
tion. Furthermore, we require that the rows sum one, ∀𝑖 ∑

𝑗 𝑡𝑖 𝑗 = 1,
so that the total game reward is conserved. We refer to the diagonal
values of the transfer matrix, 𝑡𝑖𝑖 , as the self-interest of the agents,
because these coefficients represent the proportion of their own
game rewards that they retain.

Prisoner’s Dilemma using a transfer matrix T =

����3/4 1/4
1/4 3/4

���� is
displayed in Table 1b. Here, both agents are ambivalent between
cooperating or defecting. This occurs because each agent stands to
gain only 3/4 as much from a possible defect action, and cooperating
increases the reward of its opponent, of which the agent is entitled
to a proportion 1/4. For any smaller self-interest, the social dilemma
is resolved, as cooperation is dominant for both players.

We can always find a transfer matrix that resolves a social
dilemma, because a matrix with all elements equal to 1/𝑛 makes the
post-transfer reward for all agents equal to 1

𝑛

∑
𝑖 𝑟𝑖 . Consequently,

due to inequality (i), cooperation becomes dominant for all agents.
Out of all possible transfer matrices that make mutual cooperation
dominant, we find the matrices with the largest minimum of diago-
nal elements. These are the matrices with the greatest amount of
self-interest that the agent(s) with the least self-interest retain, and
we call the value of its minimum diagonal element the general self-
interest level of the game, denoted by 𝑔∗. Formally, writing 𝑑𝑖𝑎𝑔(T)
as a function returning the tuple of diagonal values of T, and the
reward function returning the post-transfer reward to agent 𝑖 as
𝑅′
𝑖
( ⃗⃗𝑟,T), we have:

𝑔∗ = max{min(𝑑𝑖𝑎𝑔(T)) | ∀𝑖 𝑅′𝑖 (𝐶
⌢ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑎−𝑖 ,T) > 𝑅′𝑖 (𝐷
⌢ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑎−𝑖 ,T)}

We refer to a transfer matrix that achieves the general self-interest
level as a minimal transfer matrix, and we denote it as T∗.

4 RESULTS
For illustration, we introduce two multi-player variants of Pris-
oner’s Dilemma, created using a weighted, directed graph with
𝑛 nodes, each representing an agent. The agents play Prisoner’s
Dilemma with every co-player they share an edge with, receiving
the weighted rewards where they have an inbound edge. Each agent
simultaneously selects a single action that they play in all their
games.

(a) Symmetrical-3PD (b) Cyclical-3PD

Figure 1: Representations of the graphical dilemmas

In both variants, each agent plays against both its co-players. In
Symmetrical-3PD (Figure 1a) an agent receives the reward from
both games, halved, whereas in Cymmetrical-3PD (Figure 1b), an
agent only receives the reward from its game with the agent with
index 𝑖+1 mod 𝑛. Their minimal transfer matrices are, respectively:

T∗ =

������
3/5 1/5 1/5
1/5 3/5 1/5
1/5 1/5 3/5

������ and T∗ =

������
3/4 1/4 0
0 3/4 1/4
1/4 0 3/4

������
In Cyclical-3PD, the minimal transfer matrix permits the agents

to retain a larger proportion (𝑔∗ = 3/4) of their own rewards com-
pared to Symmetrical-3PD (𝑔∗ = 3/5). This is because the rewards
for each agent depend only on its own action and the action of
one other agent. Consequently, each agent only needs to offer a
proportion of its rewards to the agent who impacts its game reward.
The situation is different for Symmetrical-3PD, where each agent
must incentivise both co-players to cooperate, resulting in a lower
general self-interest level. Prior approaches [1–4] are unable to
capture this greater general self-interest level for Cyclical-3PD, as
they use a single parameter to govern the distribution of incentives.

In our full paper [5], we introduce an algorithm to compute
the minimal transfer matrix for normal-form social dilemmas. We
provide results for several normal-form social dilemmas applied
to different graphs structures. We observe that if the agents are
most strongly connected only to a neighbourhood of agents, then
the general self-interest level of the game remains stable as the
number of agents increases. Conversely, if the connectivity of the
agents increases with the number of agents, representing a mixed
community, the general self-interest level of the game tends to zero
as the number of agents increases. Furthermore, the most connected
agent in the network may be the limiting factor.

The structure of the minimal transfer matrix is informative, as
agents typically provide incentives only to those who impact their
outcomes the most. Games with a sparse minimal transfer matrix
inform which agents influence others, and tend to permit agents to
retain a greater self-interest level as the number of agents increases.
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