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ABSTRACT
Pricing covers for catastrophes is challenging for insurers due to
uncertainty in loss probabilities. This paper addresses this so-called
ambiguity problem in competitive catastrophe insurance markets
through three key approaches. First, it introduces ambiguity in pre-
mium pricing and capital holdings. Second, it develops an Agent-
based Model simulator to mimic general insurance markets and
the Lloyd’s market. Third, it applies Empirical Game-Theoretical
Analysis to explore insurers’ ambiguity preferences in different
markets. The study evaluates the effects of ambiguity by analyzing
their impact on individual companies, differences between small
and large companies, and overall market performance. Simulation
results reveal that the simulator effectively captures underwriting
cycles and insurers’ strategic shifts following catastrophes. In mar-
kets with equally sized insurers, competition mitigates the negative
effects of ambiguity by stabilizing premiums and increasing the
number of underwritten risks. In markets with varying-sized insur-
ers, large insurers gain market power while small insurers adopt
aggressive ambiguity strategies to compete. In contrast, Lloyd’s
lead-follow mechanism encourages conservative ambiguity strate-
gies and reduces bankruptcy.
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1 INTRODUCTION
Catastrophes, such as hurricanes, terrorist attacks, and financial
crises, are low frequency and high impact risks [16, 27]. Over recent
decades, due to various reasons such as climate change and unstable

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

geopolitics, their frequency and the resulting losses have increased
significantly [1, 13, 20, 34]. This rise of catastrophes has led to more
victims needing compensation. Among diverse compensations, the
insurance industry plays an important role. For example, in 2007,
the property damage in the United States caused by 335 catastrophes
amounted to over $70 billion, with insurance covering about one-
third [13]. Consequently, a great deal of attention is increasingly
paid to catastrophe insurance [13].

The catastrophe insurance market faces the unique challenge
of the rare historical data to get an accurate estimation of the loss
probability distribution [5, 9, 16]. This market is characterized by
ambiguity, defined as uncertainty about the probability of loss
[9, 27]. To address this, insurers rely on the catastrophe models to
estimate the potential losses [15, 20]. However, due to imperfect
scientific knowledge and competing theories, the loss probability
based on these models can deviate from the actual outcome, which
is another source of ambiguity [10, 11, 35]. To respond to ambiguity,
insurers often set higher premiums and maintain higher holding
capitals, which can result in thin markets or market failure [4, 5, 9,
18]. Lloyd’s of London is the world’s largest catastrophe insurance
market, known for its strong capacity and flexibility due to its lead-
follow mechanism, where multiple insurers share the same risk
[20]. This mechanism allows Lloyd’s market to cover catastrophes,
such as terrorist attacks, political violence, commercial property
damage, etc [20, 22]. These risks are currently highly ambiguous
lacking sufficient data and fundamental models [11, 26].

Ambiguity is a critical challenge in catastrophe insurance mar-
kets. Previous research has examined its impact on market par-
ticipants’ behavior [3, 18], and insurance pricing either by adopt-
ing "𝛼-maxmin" expected utility representation [9, 14], or through
model distortion technology [12, 17, 28]. However, there is a lack of
studies exploring the effects of ambiguity in competitive insurance
markets, particularly in Lloyd’s market. This paper fills this gap
by investigating how ambiguity influences individual and systemic
performance in competitive catastrophe insurance markets. Unlike
previous studies that model insurers’ competition as a normal form
game [21, 24, 30, 33, 34], which is unsuitable for the complex dy-
namics of multi-agent interactions in real world, this paper is the
first to model insurers’ competition as an empirical game, where
payoffs are generated through simulation. Additionally, this paper
provides the first analysis of ambiguity in Lloyd’s market.
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There are three main challenges in studying ambiguity in catas-
trophe insurance markets and our contribution addresses these
challenges.
i) Diverse Insurer Sizes and Strategies. Insurers differ in capital
size and risk appetite. We introduce different ambiguity levels to
insurers based on an 𝛼-maxmin model [10] to study the impact
of ambiguity. In this model, ambiguity-averse (ambiguity-seeking)
insurers place more (less) weight on higher probabilities of ruin,
hold more (less) capital, and charge a higher (lower) premium.
ii) Complex System and Market Dynamics. Insurance markets
including Lloyd’s market are characterized by complex interactions
among participants [22]. To understand these dynamics, we de-
velop a simulator based on agent-based model (ABM) to study the
behavior of individual participants. Our simulator is designed to be
modular and flexible to fit both the general insurance market and
Lloyd’s market by incorporating a lead-follow mechanism.
iii) Competitive Market. The competitive nature of the market
means that insurers’ strategies are influenced by others. We model
insurers’ interactions as a competitive game by allowing them to
choose ambiguity strategies according to the equilibrium status
derived from empirical game-theoretical analysis (EGTA) [32].

The paper is organized as follows: Section 2 explains how we
introduce ambiguity in insurance pricing and capital holding. Sec-
tion 3 details the simulator and empirical game modeling. The main
experiment results and their analysis are shown in Section 4. The
last section summarizes our findings and suggests future research.

2 AMBIGUITY IN INSURANCE
In this section, we integrate ambiguity attitudes into the insurance
underwriting model. We review related work on ambiguity in in-
surance, highlighting the approaches that link insurers’ level of
ambiguity to pricing strategies. Building on the “𝛼-maxmin” ap-
proach, we explain how ambiguity is incorporated into pricing
and capital holding models while aligning with European Union
insurance Solvency II risk management requirements [8].

2.1 Related Work
The ambiguity problem in catastrophe insurance markets has been
studied across three main aspects. First, studies focus on the effects
of ambiguity on the behavior of market participants. It is found that
insurance decision-makers are ambiguity averse and would set pre-
miums significantly higher for risks under ambiguity [18]. Higher
premiums and lower coverage will degrade the performance of the
insurance market, reduce the demand [3] and lead to market failure
[18]. Insurers charge even higher premiums when ambiguity stems
from conflict theories rather than model imprecision [7]. Second,
studies explore the ambiguity in insurance pricing. In [14], authors
adopt the well-known "𝛼-maxmin" expected utility representation
of choice under ambiguity into the insurance and establish a clear
connection between ambiguity and the pricing of (re)insurance. In
their model, the insurer’s attitude to ambiguity affects the premium
through the amount of capital it chooses to hold against the risk
of ruin. In [9], authors use two real data sets to demonstrate the
practical use of quantifying the insurer’s attitude to ambiguity. The
impact of ambiguity aversion on insurance pricing is explored in
[35], with closed-form pricing formulae incorporating ambiguity

aversion into mortality risk and property risk. Finally, the third
aspect concentrates on the premium based on model distortion
technology to cope with ambiguity. Research explores closed-form
solutions for the extreme case risk measures [28], optimal insur-
ance contracts under distortion risk measures [17], andWasserstein
distance-based ambiguity measurement [12].

2.2 Risk Management
Exposure management is a critical function for all insurance firms
to quantify the impact of worst-case scenarios on their portfolio
[22]. In our model, we keep the design of 𝑛 peril regions in [16]
and calculate risk exposure and balance portfolio settings for each
region. We use the Value-at-Risk (VaR) to quantify the risk of the
insurers in each peril region. For a random variable 𝑋 representing
the losses in the insurer’s portfolio of risks under study, the VaR
with exceedance probability 𝜃 ∈ [0, 1] is a 𝜃 -quantile (defined in
Equation (1)).

𝑉𝑎𝑅𝜃 (𝑋 ) = inf{𝑥 ∈ R : 𝑃 (𝑋 > 𝑥) ≤ 𝜃 }. (1)

Under Solvency II, insurers are required to have 99.5% confidence
they can cope with the worst expected losses over a year [8]. This
means that the capital that the insurer is required to hold can be
computed with the 𝑉𝑎𝑅0.005 (𝑋 ). The VaR calculation is simplified
in two ways: (i) considering the VaR due to individual catastrophes,
and (ii) considering the VaR separately by peril region because it is
not required to compute the VaR for all peril regions and over the
entire year for the ambiguity problem [16].

2.3 Premium Pricing and Capital Holding
In our design, the ambiguity comes from the inaccuracy of catas-
trophe models and Π is the set of convex and compact models that
encompasses all probability measures the insurer believes might
characterize its uncertainty correctly. At time 𝑡 , insurer 𝑗 deter-
mines whether to underwrite a contract by assessing if its capital,
𝑍
𝑗
𝑡 , is sufficient to cover the combined VaR of both new and existing

contracts within the peril region. We introduce a parameter 𝑝𝑑𝑒𝑣
to indicate the deviation of the model 𝜋 ∈ Π from the true loss
distribution. The capital required for the insurer must be at least
𝑉𝑎𝑅0.005 (𝑋 ) · 𝑝𝑑𝑒𝑣 · 𝜖 · 𝑣 , where 𝜖 is a margin of safety and 𝑣 is
the value of risk brought by brokers. Additionally, insurers aim to
maintain a diversified portfolio by ensuring approximately equal
VaR across all the 𝑛 peril regions.

In terms of the insurer’s capital setting and pricing, both the pre-
existing insurance portfolio and the new contract to be potentially
added to this portfolio are regarded as a book 𝑓 ∈ F . An insurance
book is a B-measure mapping from state space S to R [10], where
B means the Borel 𝜎-algebra on S, and S consists of all possible
states that are relevant to the performance of the book. Based on
the insurance pricing model that maximizes expected profit subject
to a survival constraint, there is an insurer that, given any book
𝑓 ∈ F , sets its capital holding 𝑍 𝑓 =𝑚𝑖𝑛{𝑥 : 𝑃𝑓 (−𝑥) ≤ 𝜃 }. That is,
𝑍 𝑓 represents the minimum holding such that the probability of
losses 𝑥 exceeding it is no more than a benchmark level 𝜃 . Here,
𝑃𝑓 (𝐸) is used for 𝑃𝑓 (𝑥 : 𝑥 < 𝐸) representing the probability that
portfolio 𝑓 pays out any amount less than 𝐸, which is calculated
among all Π. Given 𝑃𝑓 (·) is defined, one can alternatively think of
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𝑥 as the VaR of book 𝑓 with respect to the confidence level "1 − 𝜃 "
[10]. Consequently, the insurer focuses on the single probability of
its book paying out less than its capital holding.

This framework is extended to allow the capital holding to de-
pend on both the range of models Π and the insurer’s attitude to
ambiguity 𝛼 about the risk of ruin. Specifically, insurer sets

𝑍 𝑓 =min{𝑥 : 𝛼 · [𝑚𝑎𝑥𝜋∈Π𝑃
𝜋
𝑓
(−𝑥)]

+ (1 − 𝛼) · [𝑚𝑖𝑛𝜋∈Π𝑃
𝜋
𝑓
(−𝑥)] ≤ 𝜃 }

=min{𝑥 : 𝛼 · [𝑝𝑚𝑎𝑥
𝑑𝑒𝑣

· 𝑃𝑓 (−𝑥)]
+ (1 − 𝛼) · [𝑝𝑚𝑖𝑛

𝑑𝑒𝑣
· 𝑃𝑓 (−𝑥)] ≤ 𝜃 }

(2)

where 𝛼 ∈ [0, 1], 𝑥 = 𝑉𝑎𝑅0.005, and the measure 𝑃𝜋
𝑓
for each

𝜋 ∈ Π on BR is defined as 𝑃𝜋
𝑓
(𝐸) = 𝜋 (𝑓 −1 (𝐸)). The weight factor

𝛼 functions similarly to the ambiguity attitude parameter 𝛼 in the
well-known 𝛼-maxmin expected utility (𝛼-MEU) representation of
decision making under ambiguity, as described in [14].

The capital holding influences the premium charged on a new
contract added to the existing portfolio in the following manner.
An insurer with book 𝑓 who agrees to an additional contract 𝑘 will
have a new book 𝑓 ′ = 𝑓 +𝑘 . Consequently, the insurer must increase
its capital holding by 𝑍 𝑓 ′ −𝑍 𝑓 . Let 𝑦 denote the opportunity cost of
capital, which is set to 10% [9]. If 𝑘 is competitively priced it must
be computed according to Equation (3), where 𝐿𝑘 is the expected
loss on 𝑘 [10]:

𝑝𝑘 = 𝐿𝑘 + 𝑦 (𝑍 𝑓 ′ − 𝑍 𝑓 ) . (3)

In [16], for the sake of simplicity, it is assumed that insurance
premiums oscillate around the fair premium 𝑝 𝑓 ,𝑡 that would on
average offset the damages and thus lead to zero profits and zero
losses. Considering the premium calculation in Equation (4), 𝑝 𝑓 ,𝑡
can be seen as the compensation of expected loss 𝐿𝑘 for each mone-
tary unit of the risk. To introduce ambiguity to the premium, firstly,
we add the capital holding cost for each monetary unit of risk to the
fair premium. Then, this price is multiplied by 𝑒𝑚 , where𝑚 is an
underwriter log markup, attempting to model the price elasticity of
demand in the market [22]. Hence, ambiguity premium 𝑝𝑎,𝑡 in our
model is calculated in Equation (5) below. Secondly, to avoid unre-
alistically high volatility, we set hard upper 𝐿𝑚𝑎𝑥 and lower 𝐿𝑚𝑖𝑛

bounds to the premium proportional to the ambiguity premium 𝑝𝑎,𝑡 .
The slope measures two key factors: i) The total available capital 𝑍 𝐽

𝑡

divided by total market loss, which is calculated by multiplying the
number of risks available in the market 𝐻 by the expected damage
by risk �̂� . ii) The impact of an insurer 𝑗 ’s share of the market capital
on the premium. It is designed such that the greater the insurer’s

share of total capital 𝑍
𝑗

0
𝑍

𝐽
𝑡

, the higher the premium it can charge

[16]. 𝛾 represents the premium sensitivity parameter in this slope.
Equations (5) and Equation (6) below are used to get the premium
at the time 𝑡 for each insurance firm 𝑗 . The temporary premium 𝑝′

𝑗,𝑡

is calculated with the slope first, then this value will be compared
with the 𝑝𝑎,𝑡 · 𝐿𝑚𝑎𝑥 and 𝑝𝑎,𝑡 · 𝐿𝑚𝑖𝑛 to get the final premium 𝑝 𝑗,𝑡 .

𝑝𝑎,𝑡 = (𝑝 𝑓 ,𝑡 + 𝑦 (𝑍 𝑓 ′ − 𝑍 𝑓 )/𝑣𝑖 ) · 𝑒𝑚 (4)

𝑝′𝑗,𝑡 = 𝑝𝑎,𝑡 · 𝐿𝑚𝑎𝑥 − 𝛾 ·𝑍 𝐽
𝑡

𝑍
𝑗

0 ·�̂� ·𝐻
(5)

𝑝 𝑗,𝑡 =


𝑝𝑎,𝑡 · 𝐿𝑚𝑎𝑥 𝑖 𝑓 𝑝𝑎,𝑡 · 𝐿𝑚𝑎𝑥 ≤ 𝑝′

𝑗,𝑡

𝑝′
𝑗,𝑡

𝑖 𝑓 𝑝𝑎,𝑡 · 𝐿𝑚𝑖𝑛 ≤ 𝑝′
𝑗,𝑡

≤ 𝑝𝑎,𝑡 · 𝐿𝑚𝑎𝑥

𝑝𝑎,𝑡 · 𝐿𝑚𝑖𝑛 𝑖 𝑓 𝑝′
𝑗,𝑡

≤ 𝑝𝑎,𝑡 · 𝐿𝑚𝑖𝑛

(6)

3 SIMULATOR DESCRIPTION
Our ABM-based simulator is designed to be modular and includes
three modules: market participants, market environment, and mar-
ket management. The market environment is implemented within
the Gym environment and our code is available on GitHub 1. Com-
pared to the closest work [22], which also developed an ABM-based
simulator for Lloyd’s market, our simulator incorporates the ambi-
guity preference and a competitive environment for insurers.

3.1 Market Participants
Insurance market participants are modeled as different types of
agents embedding behaviors and actions reflective of real-world
concepts.
i) Brokers: Brokers acting as intermediaries between the customers
and insurers, bring new risks to the market. At time 𝑡 , the number of
brokers is 𝐵𝑡 . We adopt the assumption from [16] that the value of
insurable risks 𝑖 brought by broker 𝑏, 𝑣𝑖 is normalized to 1 monetary
unit each. This assumption is fairly realistic for property insurance,
which constitutes a significant portion of catastrophe insurance.
These brokers are responsible for accepting insurance contracts,
paying premiums and asking for claims.
ii) Insurers: Insurers are responsible for pricing risks brought by
brokers, receiving premiums, paying claims, and paying dividends.
In Lloyd’s market, groups of private individuals or corporate in-
vestors who underwrite risks are called syndicates and they also
need to decide which line size (i.e., a portion of risk to be covered –
see Section 3.2.1) to give [20, 22]. At time 𝑡 , the number of insurers
is 𝐽𝑡 . They offer standard insurance contracts with a 12-month dura-
tion (𝑡𝑐 ). Each insurer 𝑗 starts with an initial capital 𝑍 𝑗

0 . Its income
comes from premiums and interests on capital 𝑍 𝑗

𝑡 at interest rate 𝜉
and its profits can be obtained from 𝑍

𝑗
𝑡 − 𝑍

𝑗

0 . The insurer exits the
market if it becomes bankrupt (𝑍 𝑗

𝑡 < 0).
iii)Capital holders: In this model, insurers pay dividends to capital
holders annually provided they are profitable [22]. The dividends
𝐷 can be calculated as 𝐷 =𝑚𝑎𝑥 (0, 𝛿 · 𝑝𝑟𝑜 𝑓 𝑖𝑡𝑠), where 𝛿 represents
the portion of profits that is paid as dividends.

3.2 Market Environment
The market serves as an environment encompassing all the initial-
ized agents and generated risks and events. It is also responsible
for the information collection and log process.

3.2.1 Lead-follow Mechanism. In the general insurance market, a
single insurer typically underwrites and assumes full responsibility
for covering the customer’s risk. In contrast, the Lloyd’s market
operates on a lead-follow mechanism, where multiple syndicates
share the risk. The lead syndicate negotiates terms with a broker
and accepts the largest portion of the risk, which is called lead line
size 𝑙𝑠𝑖𝑧𝑒 , while other syndicates (followers) agree to take smaller
shares of the risk, called as follow line size 𝑓𝑠𝑖𝑧𝑒 until 100% of the

1https://github.com/teresa-bi/Simulator-SpecialtyInsurance
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coverage required is achieved, and adhere to the leader’s terms [22].
This structure enables Lloyd’s to handle larger and more complex
risks by spreading the exposure among several participants. In our
model, the 𝑙𝑠𝑖𝑧𝑒 is set to 1 for the general insurance market and 0.5
for Lloyd’s market.

3.2.2 Catastrophe. A catastrophe is a low-frequency, high-severity
event affecting multiple risks simultaneously, causing significant
drops in insurers’ capitals and premium increases. Inspired by [16],
each catastrophe in this model is associated with a peril region and
affects all the risks in this region and leaves policies issued in other
perils regions unaffected. Claims occur in clusters within each peril
region. Catastrophe follows a Poisson distribution with variable 𝜆𝑐 .
The total damage inflicted by every catastrophe follows the Pareto
probability distribution with a shape parameter 𝜏 , and the value
of the damage follows the truncated distribution designed in [16].
The individual loss 𝑑𝑜 is calculated as in [16].

3.2.3 Attritional Loss. Attritional Loss (high-frequency, low-severity
events) is defined as those losses which are generally uncorrelated
with each other in both space and time and are fairly predictable
[22]. The attritional loss claim also follows a Poisson distribution
with 𝜆𝑎 , and the severity of the loss is defined by the gamma dis-
tribution with mean 𝜇𝑎 and coefficient of variation 𝑐𝑜𝑣𝑎 to get the
scale 𝜇𝑎 · 𝑐𝑜𝑣2𝑎 and shape 1

𝑐𝑜𝑣2𝑎
of the gamma distribution in [22].

3.2.4 Events. In the designed simulator, three types of events are
included that trigger the interaction among market participants.
Detailed explanations are provided next.
i) Bring Risk Event: Risks are brought by each broker following
a Poisson distribution with parameter 𝜆𝑟 . Once a broker brings a
risk, the risk-related information is sent to insurers, who calculate
premiums based on their current capital, portfolio and ambiguity
level. In the general insurance market, the broker selects the insurer
who offers the lowest price. In Lloyd’s market, the insurer offering
the lowest price becomes the leader, and the other insurers who are
willing to cover this risk are selected as followers randomly until
this risk is fully covered. If the risk cannot be covered fully by the
above strategy, the leader covers the rest of the risk. If no insurer
offers coverage, this risk remains uncovered.
ii) Pay Premium Event: At the beginning of the contract, the
broker will pay premiums to the lead insurer according to its lead
line size 𝑝𝑙𝑒𝑎𝑑 = 𝑝 𝑗,𝑡 · 𝑙𝑠𝑖𝑧𝑒 · 𝑣𝑖 , and to follow insurers according to
their follow line size 𝑝 𝑓 𝑜𝑙𝑙𝑜𝑤 = 𝑝 𝑗,𝑡 · 𝑓𝑠𝑖𝑧𝑒 · 𝑣𝑖 .
iii) Ask Claims Event: Throughout contracts, if any catastrophic
or attritional losses occur, the broker initiates a claim request. If
the claim is approved and paid, the claim record and the capital
of insurers will be updated. Claim received by the insurer 𝑗 from
risk 𝑖 is computed by Equation (7) below, where ℎ𝑖 is the excess
of the insurance contract, 𝑑𝑜,𝑖 is the individual loss affected by the
catastrophe or attritional event 𝑜 on risk 𝑖 , 𝑣𝑖 is the value of risk,
and 𝑄𝑖 is the deductible.

𝐶𝑙𝑎𝑖𝑚𝑠𝑜,𝑗 =
∑︁
𝑖

{
min(ℎ𝑖 , 𝑑𝑜,𝑖 · 𝑣𝑖 ) −𝑄𝑖 𝑄𝑖 ≤ 𝑑𝑜,𝑖 · 𝑣𝑖
0 𝑑𝑜,𝑖 · 𝑣𝑖 ≤ 𝑄𝑖

. (7)

The insurers holding affected contracts will pay claims to brokers
according to their lead line size𝐶𝑙𝑎𝑖𝑚𝑠𝑙𝑒𝑎𝑑 = 𝐶𝑙𝑎𝑖𝑚𝑠𝑜,𝑗 · 𝑙𝑠𝑖𝑧𝑒 , or to
their follow line size 𝐶𝑙𝑎𝑖𝑚𝑠𝑓 𝑜𝑙𝑙𝑜𝑤 = 𝐶𝑙𝑎𝑖𝑚𝑠𝑜,𝑗 · 𝑓𝑠𝑖𝑧𝑒 .

3.3 Market Management
The management algorithm is included in this simulator, which
gets access to the status of brokers, insurers, and events and assists
insurers in making decisions.

3.3.1 Game Formulation. In this section, we explore how ambigu-
ity impacts the general insurance market and Lloyd’s market using
game theory. By adding ambiguity to insurance pricing, insurers
can select their preferred ambiguity level 𝛼 and adjust their pre-
miums to achieve higher expected returns. However, selecting the
optimal ambiguity parameters is challenging because each insurer’s
utility depends not only on its own strategy but also on the strate-
gies of others. This creates a game where the ambiguity parameters
are taken as strategies. In our game model, given a strategy profile,
insurers’ payoffs are determined by their own expected utilities
(i.e., capital changes during the evaluation period) estimated by the
simulator, thus inducing an empirical game [23]. EGTA methodol-
ogy is developed to examine multi-agent interactions in complex
systems [31, 32] and has been applied in many practical settings in
financial markets [6, 19, 25, 29]. We use the EGTA method to solve
for the equilibrium of this game involving multiple insurers. Based
on the obtained payoff matrix, we use the 𝛼-rank algorithm [23] to
compute the equilibrium in which no insurer has the incentive to
switch its strategy and the system reaches a stable final state under
incentive-compatible conditions. According to the equilibrium, the
values of ambiguity parameters are eventually determined in an
incentive-compatible way.

The simulation is modeled as a repeated game and for each game,
the period is one year (12 time steps). The detailed game design is
as follows.

At time 𝑡 = 0, initiate 𝐵 number of brokers 𝑏, and 𝐽 number
of insurers 𝑗 with initial capital 𝑍 𝑗

0 , generate risks, catastrophes
and attritional losses, market settings including 𝑙𝑠𝑖𝑧𝑒 , 𝑓𝑠𝑖𝑧𝑒 , etc. All
insurers are players in this game and each of them can play an
ambiguity strategy from 𝑆 = {0, 0.5, 1}. Let 𝑆 𝐽 𝑜𝑖𝑛𝑡 = 𝑆 𝐽 be the
space of the joint strategy profile. Each insurer receives a payoff
𝑈 𝑗 : 𝑆 𝐽 𝑜𝑖𝑛𝑡 → R. For period 𝑇𝑔𝑎𝑚𝑒 = 1, 2, ..,𝑇𝑠𝑖𝑚/12, repeat the
following five steps:

• i) Update the market whenever a catastrophe or attritional
loss occurs, brokers ask for claims, and insurers make pay-
ments. Update the insurers’ capital by incorporating premi-
ums, interest earnings, and dividend payouts.

• ii) Calculate the payoff𝑈 𝑗

𝑇
= 𝑍

𝑗

𝑇+1 −𝑍
𝑗

𝑇
, which is the change

of the capital 𝑍 𝑗

𝑇+1 predicted at the end of this year𝑇 and the
capital 𝑍 𝑗

𝑇
at the beginning of this year, for traversing all the

strategies combination |𝑆 𝑗 | from the ambiguity strategy set
𝑆 for all insurers in the market. Then compile all the payoff
data into a payoff matrix.

• iii) Use 𝛼-rank algorithm to score the strategies profile via
the stationary distribution 𝜋 of the ensuing Markov chain
[23]. The strategy profile with the highest score, indicating
the best stability, is selected as the equilibrium strategy of
the induced empirical game: s★

𝑇
= (𝑠★1,𝑇 , 𝑠

★
2,𝑇 , . . . , 𝑠

★
𝐽 ,𝑇

), where
𝑠★
𝑗,𝑇

denotes the strategy chosen by insurer 𝑗 at equilibrium
in year 𝑇 .
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Table 1: Parameter Settings for Simulation [16, 22]

Symbol Variable Value

T Total simulation time steps 600
𝐵 Number of brokers 30
𝐽 Number of insurers 6
𝑍
𝑗
0 Initial capital of insurers 40,000

𝛿 Dividends as share of profit 0.4
𝑄 Deductibles of insurance value 0
𝜉 Monthly interest rate 0.001
𝑣𝑖 Value of risk 5000
𝜎 Tail exponent of damage distribution 2
𝑛 Number of catastrophe regions 4
𝜖 Margin of safety 2
𝑚 Underwriter Markup 0.2
𝐿𝑚𝑖𝑛 Lower premium limit factor 0.85
𝐿𝑚𝑎𝑥 Upper premium limit factor 1.2
𝛾 Premium sensitivity parameter 1.29 × 10−9
𝜃 Risk exposure balance requirement parameter 0.1
𝜆𝑟 Poisson distribution of risk brought by broker per month 1.8
𝜆𝑎 Attritional Loss yearly claim frequency 0.1
𝑚𝑒𝑎𝑛𝑎 Attritional Loss mean 60,000
𝑐𝑜𝑣𝑎 Attritional Loss cov 1
𝑙𝑠𝑖𝑧𝑒 lead line size {0.5, 1}
𝑓𝑠𝑖𝑧𝑒 follow line size {0.1, 0}
𝜆𝑐 Poisson distribution of the catastrophe 3/100
𝑡𝑐 Mean contract runtime 12
𝛼 ambiguity level {0, 0.5, 1}
𝑦 cost of capital 0.1
𝑝𝑑𝑒𝑣 catastrophe probability deviation factor [0.1, 1]

• iv) Calculate the premium 𝑝 𝑗,𝑇 using 𝛼 = 𝑠★
𝑗,𝑇

for each in-
surer, the one offering the lowest premium will be the leader
for this risk and cover the corresponding lead line size 𝑙𝑠𝑖𝑧𝑒
fraction.

• v) Insurers who also offer premiums for the risk will be
randomly selected as followers until the 100% risk is covered,
otherwise, the risk remains uninsured. This step is omitted in
the general insurance simulation and applies only to Lloyd’s
market simulation.

4 SIMULATION AND RESULTS
4.1 Simulation Settings
This experiment analyzes the impact of ambiguity on the general in-
surance market and Lloyd’s market. Since anecdotal evidence says
that there are 10 largest syndicates in Lloyd’s market and the top 6
syndicates and top 30 brokers can dominate the market, the number
of agents is set accordingly 𝐽0 = 6 and 𝐵0 = 30. Simulation settings
are detailed in Table 1. Using EGTA, we approximate equilibrium
through 100 simulations with different random seeds. Each simu-
lation has 36 tasks for all the strategy combinations. We run 100
tasks in parallel, and each simulation takes approximately 27 hours.
While catastrophes are random, they occur at the same time steps
for the different replications to provide meaningful comparisons.

4.2 Results Analysis
In this section, we first assume that insurers can independently
determine their own ambiguity parameters and fix their ambiguity
strategies during the simulation period. Then, for all ambiguity
strategy profile space, insurers use the simulator with EGTA to es-
timate their expected utilities and choose the top-ranked ambiguity
strategies as equilibrium strategies.

4.2.1 Market of Same Size Insurers. In the first experiment where
insurers have the same initial capital of 40, 000, we compare the
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Figure 1: Underwriting Cycles for Same Size Insurers
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Figure 2: Average Market Capital for Same Size Insurers
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Figure 3: Average Market Premiums for Same Size Insurers

simulation results of i) the ambiguity parameter is fixed at 0 for all
the insurers, ii) the ambiguity parameter is fixed at 0.5 for all the
insurers, iii) the ambiguity parameter is fixed at 1 for all the insurers,
and iv) the ambiguity parameter is decided from the equilibrium
strategies solved by the EGTA method in the genral insurance
market and Lloyd’s insurance market.

Figure 1 validates the capability of our simulator to mimic the
insurance market because the variations in capital and premium
reflect the critical insurance market phenomenon known as the
"underwriting cycle" [22]. It compares capital and premium time
series from a single simulation in a competitive environment. For
both general and Lloyd’s insurance markets, we observe that dur-
ing a soft market, the average market capital is high, indicating
that insurers have sufficient money. On the contrary, during a hard
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Figure 4: Average Total Contracts for Same Size Insurers
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Figure 5: Average Bankrupt Firms for Same Size Insurers

market, many insurers may face financial tightness or even bank-
ruptcy and premiums rise. It can be shown that from 𝑡 = 450 to
𝑡 = 550, the market turns to a hard market, increasing average pre-
miums by approximately 0.03. Compared to the general insurance
market, Lloyd’s market experiences less fluctuation and maintains
lower average premiums, suggesting that its risk-sharing mecha-
nism in Lloyd’s enhances stability. Even with aggressive ambiguity
strategies and lower premiums, the overall Lloyd’s market remains
stable.

Figure 2 and Figure 3 illustrate the average market capital and
average market premiums of 100 simulation processes over 50 years.
The trends reveal that, on average: 1) In the same market, a higher
ambiguity parameter leads to a conservative insurer with increased
premium and capital. Specifically, insurers with ambiguity param-
eter 𝛼 = 1 have the highest premium and capital (presented by
blue dotted dash lines), followed by 𝛼 = 0.5 (presented by orange
long-dashed lines), while 𝛼 = 0 (presented by green dotted lines)
with the lowest average premium and capital. 2) When insurers
choose the same ambiguity parameter, they have higher premiums
and capital in the general insurance market compared to Lloyd’s
market. For example, the blue dotted dash line in the top sub-figure
of Figure 3 representing the general insurance market fluctuates
around 0.47, which is larger than the 0.45 seen in the bottom sub-
figure in Lloyd’s market. 3) Insurers setting 𝛼 = 0 in the general
insurance market demonstrate the poorest performance. The time
series exhibits the most fluctuating and low capital due to a low

premium and lack of risk-sharing mechanism, which cannot pre-
vent bankruptcy (as shown in Figure 5). Consequently, it results in
significant capital fluctuations.

Figure 4 compares the average number of total contracts un-
der different conditions. Lloyd’s market can underwrite more risks
compared to the general insurance market. Specifically, the average
number of contracts in the general insurance market is below 1,250.
In contrast, in Lloyd’s market, even the least effective method ex-
ceeds 1,250 contracts (insurers set ambiguity as 1 presented by blue
dotted dash line), while the most effective method surpasses 1,500
contracts (insurers set ambiguity as 0 presented by green dotted
line).

By comparing the results of an average number of bankrupt firms
(Figure 5), it can be concluded that insurers with higher ambiguity
value (i.e., conservative) yield lower bankruptcies in both insur-
ance markets and the risk-sharing mechanism in Lloyd’s can also
reduce the bankruptcies. Insurers with the highest fixed 𝛼 = 1 (blue
dotted dash line) demonstrate no bankruptcies in Lloyd’s market.
Conversely, insurers with the lowest fixed 𝛼 = 0 (green dotted dash
line) in the general insurance market perform the worst, with the
earliest bankruptcy and the highest average number of bankrupt
firms.

After we introduced the competition to the market, several obser-
vations can be drawn: 1) The high premiums caused by ambiguity
(≥ 0.5) can be effectively reduced by the competition (lower value
of red line than blue dotted dash line and orange dash line shown
in Figure 3), which results in increased number of total contracts
(higher value of red line than blue dotted dash line shown in Fig-
ure 4). 2) Compared to the method with a fixed ambiguity strategy
of 0 (green dotted line in all figures), equilibrium strategies from
the competitive game bring significant benefits, notably reducing
bankruptcies, raising premiums and raising capital. 3) Bankruptcy
is an avoidable problem for all the methods. Although we set the
annual profits as the utility in our game, competition can still cause
bankruptcy. 4) Fixed 𝛼 = 1 can be seen as the upper threshold in our
analysis, achieving the highest capital. However, this scenario is
unrealistic in the competitive market. Because insurance companies
cannot maintain an ambiguity strategy of 1, as there will inevitably
be competitors who lower their ambiguity strategies, lower their
premiums, underwrite more risks, and seek to make profits.

4.2.2 Market of Various Size Insurers. In the second experiment,
six insurers are initialized with varying levels of capital and ambi-
guity levels. The insurers are divided into two groups. 1) Large-size
insurers: three insurers start with 40, 000, each assigned a different
ambiguity parameter from 0, 0.5 and 1. 2) Small-size insurers: three
insurers start with 20, 000, each assigned a different ambiguity pa-
rameter from 0, 0.5 and 1. Their market performance is compared
across two scenarios: a general insurance market with a lead line
size of 1 and Lloyd’s market with a lead line size of 0.5.

Figure 6 and Figure 7 compare average total capital and bankrupt-
cies in the general insurance and Lloyd’s market. Despite the aver-
age capital in the general insurance market being 1.5 times higher
than that in Lloyd’s market, it faces a higher risk of severe bankrupt-
cies. In contrast, Lloyd’s lead-follow mechanism significantly im-
proves the overall market performance, contributing to greater
stability and enhancing resistance to insolvency.
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Figure 6: Average Market Capital for Various Size Insurers
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Figure 7: Average Number of Bankrupt Firms for Various
Size Insurers

Figure 8 and Figure 9 show the effects of ambiguity on the indi-
vidual insurer capital performance. From Figure 8, it can be shown
that 1) large aggressive insurer holding ambiguity level at 0 (Insurer
A) is more prone to bankruptcy regardless of the market types; 2)
competition enhance the performance of large insurers by increas-
ing their capital and reduce bankruptcy risk, notably for Insurer C,
whose capital doubles in the general insurance market; 3) large con-
servative insurer holding ambiguity level at 1 (Insurer E) performs
similarly in both insurance market, with and without competition.
From Figure 9, it can be concluded that 1) small-size insurers with
high (Insurer F) or low (Insurer B) ambiguity levels are more likely
to survive compared to the ambiguity-neutral one (Insurer D), be-
cause small insurers mitigate risks by either being conservative
(charging higher premiums and underwriting fewer contracts) or
being aggressive to make more profits to resist bankruptcies during
catastrophes; 2) small aggressive insurer (Insurer B) can signifi-
cantly increase its capital, while small conservative insurer (Insurer
F) achieves steady but less dramatic profits; 3) both the risk-sharing
mechanism in Lloyd’s market and the competition introduced by
the game can greatly improve the small insurers’ performance, for
instance, Insurer D experiences fewer bankruptcies in Lloyd’s mar-
ket and also gains stability from competition in both insurance
markets.

To understand the role of the game on various size syndicates,
the average capital and average ambiguity strategies for large-size
and small-size insurers are plotted in Figure 10 (a) and Figure 10
(b). Several meaningful conclusions need to be highlighted here.
Firstly, in general, insurers are more ambiguity-seeking, choosing
lower 𝛼 value on higher probabilities of ruin, holding less capi-
tal, and setting lower premiums in the general insurance market
(represented by green and blue dash lines) compared to those in
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Lloyd’s market (represented by red and orange dash lines). Because
insurers are more aggressive in the general insurance market, their
capital performance are more fluctuating and more bankruptcies
happen compared to Lloyd’s market. Secondly, compared to the
small-size insurers, large-size insurers are more ambiguity-averse,
selecting higher 𝛼 value on higher probabilities of ruin, holding
more capital, and setting higher premiums (represented by the
higher value of green lines than blue lines in the general insurance
market, and higher value of red lines than orange lines in Lloyd’s
market). These results show that the competition among insurers
can enable large-size insurers to leverage their market power and
set higher premiums for risks. Small-size insurers are forced to
take more aggressive strategies in the competition to make profits,
however, it may expose them to un-afforded risks during catas-
trophe events and increase their risk of bankruptcy. Thirdly, the
lead-follow mechanism can reduce the competition among various
size insurers because risks are shared among them and the differ-
ence between the red line and the orange line is smaller than the
difference between the green line and blue line in Figure 10 (b).

Figure 10 (c) shows the timing and value of catastrophe events.
By comparing Figure 10 (a), Figure 10 (b), and Figure 10 (c), we
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Figure 10: Average Capital and Average Ambiguity Strategies
for Large and Small Insurers under Catastrophes over 50 Year

can draw the impact of catastrophes on strategy selection and un-
derwriting cycles. From 𝑡 = 0 to 𝑡 = 210, a period of soft market,
individual catastrophe can affect the strategies. For example, after
the catastrophe happening at 𝑡 = 113 and 𝑡 = 176, insurers in
both markets become more conservative by raising their ambiguity
strategies (higher 𝛼), holding more capital and charging higher pre-
miums. It seems that 𝑡 = 67 is the opposite example and it can be
caused that at this period, the number of underwriting risks is still
small and catastrophe can only affect a small number of contracts
and will not influence the strategies of insurers. Following a series
of catastrophes, the market shifts to a hard period. Catastrophes in
this period are not severe but can also encourage insurers to adopt
more conservative strategies. Notably, around 𝑡 = 256 and 𝑡 = 328,
smaller but frequent catastrophes can lead insurers to raise their
ambiguity strategy levels significantly. From 𝑡 = 400 to 𝑡 = 501,
fewer severe catastrophes occur, and the market turns to a soft state.
However, after three severe catastrophes at 𝑡 = 501 and 𝑡 = 533
and 𝑡 = 555, the market transits to a hard period again. For the
first two catastrophes, insurers immediately raise their ambiguity
strategies after them. Interestingly, the third catastrophe at 𝑡 = 555
does not result in increased conservatism but rather more aggres-
siveness, which is likely due to prior bankruptcies diminishing this
catastrophe’s impact. These trends indicate that both high-value
and frequent catastrophes drive insurers to adopt higher ambiguity
strategies and hold more capital. Infrequent catastrophes and more
aggressive strategies (lower 𝛼 ambiguity strategies) can turn the
market from hard to soft. However, frequent severe catastrophes
can lead to bankruptcies, even with conservative strategies.

Inspired by the results in Figure 10, ambiguity strategies at each
time step𝑇𝑔𝑎𝑚𝑒 can be influenced by three key factors: 1) the capital
of the insurance company at the start of each game 𝑍 𝑗

𝑇𝑔𝑎𝑚𝑒
, 2) all

R = 0.75, p < 2.2e−16
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Figure 11: Correlation Between Ambiguity Levels and Affect-
ing Factors

the catastrophe values in the previous game 𝑑𝑇𝑔𝑎𝑚𝑒−1
𝑜 , and 3) the

lead line size in different competition scenarios, whether it is a fully
competitive general insurance market with 𝑙𝑠𝑖𝑧𝑒 = 1, or Lloyd’s
market with cooperation risk-sharing mechanism where 𝑙𝑠𝑖𝑧𝑒 = 0.5.
We take the Principal Component Analysis (PCA) [2] to determine
the optimal combination of these factors that most strongly cor-
relates to the ambiguity preferences. After standardizing data of
capital, catastrophe value, lead size and ambiguity level to a mean
of 0 and a variance of 1, the optimal combination was found to be
−0.13 ·𝑑𝑇𝑔𝑎𝑚𝑒−1

𝑜 +0.71 ·𝑍 𝑗

𝑇𝑔𝑎𝑚𝑒
−0.70 ·𝑙𝑠𝑖𝑧𝑒 . This combination shows

a strong positive correlation of 0.75 to ambiguity levels. Insurers
can use this relationship to adjust their ambiguity strategies in
different competition scenarios to enhance performance.

5 CONCLUSION
This paper addresses the ambiguity problem in the catastrophe
insurance market and takes Lloyd’s market as a case study. By
introducing ambiguity preferences for insurers to calculate capi-
tal holdings and premiums, insurers can strategically respond to
catastrophe and competition. The market performance is enhanced
threefold: 1) Competition reduces the higher premiums caused by
the ambiguity, enabling more risks to be underwritten; 2) Large-
size insurance companies can leverage market power to set higher
premiums in competition, while smaller insurance companies can
adopt conservative strategies in Lloyd’s market to avoid insolvency;
3) Insurance companies can adjust their ambiguity strategies to
manage potential losses and ensure market stability in response to
severe or frequent catastrophes. Compared to general insurance
markets, the lead-follow mechanism in Lloyd’s market reduces mar-
ket volatility and bankruptcy risk. Future research could include
parameter-sensitive experiments, the application of reinforcement
learning for centralized and decentralized management, and an
exploration of equilibrium dynamics between insurers and brokers.
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