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ABSTRACT
Traffic assignment analyzes traffic flows in road networks that

emerge due to traveler interaction. Traditionally, travelers are as-

sumed to use private cars, so road costs grow with the number of

users due to congestion. However, in sustainable transit systems,

travelers share vehicles s.t. more users on a road lead to higher shar-

ing potential and reduced cost per user. Thus, we invert the usual

avoidant traffic assignment (ATA) and instead consider synergistic
traffic assignment (STA) where road costs decrease with use.

We find that STA is significantly different from ATA from a

game-theoretical point of view. We show that a simple iterative

best-response method with simultaneous updates converges to an

equilibrium state. This enables efficient computation of equilibria

using optimized speedup techniques for shortest-path queries. In

contrast, ATA requires slower sequential updates or more compli-

cated iteration schemes that only approximate an equilibrium. Ex-

periments with a realistic scenario for the city of Stuttgart indicate

that STA indeed quickly converges to an equilibrium. We envision

STA as a part of software-defined transportation systems that dynam-

ically adapt to current travel demand. As a first demonstration, we

show that an STA equilibrium can be used to incorporate traveler

synergism in a simple bus line planning algorithm to potentially

greatly reduce the required vehicle resources.
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1 INTRODUCTION
Passenger transportation is in a crisis. Established systems often

predominantly rely on the use of private cars, which leads to con-

gestion, pollution, and bad usage of space in urban areas. Tradi-

tional, statically planned public transportation is expensive, slow

and inflexible. Thus, there is a lot of interest in more flexible sys-

tems that adapt to actual demand using a carefully orchestrated

combination of individual transportation, shared taxis, and larger

shared vehicles. We are interested in evaluating the potential of

such software-defined transportation systems.

To this end, previous work evaluated the usage of large fleets of

shared taxis in urban areas [1, 8, 22]. This alone has limited sharing

potential which does not suffice to service the traveler demand

in entire metropolitan areas. Using walking/bicycles/scooters to

reach pickup and dropoff points improves upon shared taxis but the

overall savings are moderate (about 20% less energy and slightly

improved travel times) [15, 25]. Thus, an essential component of

efficient software-defined transportation is a way to identify roads

with high sharing potential solely based on the (previously mea-

sured or simulated) demands of travelers (agents). We model this

using a traffic assignment congestion game where agents’ strategies

are paths in a road network (a graph), resulting in loads on road

segments (edges – the resources of the game). We are interested in

equilibria, i.e., strategies (path choices) for each agent such that no

agent can reduce their cost by unilaterally changing their path.

Traffic assignment has been intensively studied but so far exclu-

sively for the avoidant case (ATA) where costs increase with load

due to congestion. This is important when considering individual

transportation. For our application, load acts as a measure of shar-

ing potential, which means costs decrease with load. We call this

synergistic traffic assignment (STA). The focus of this paper is to
analyze best response for STA, where agents react to the current

situation with a strategy that is optimal for themselves. We are

interested in whether this converges to an equilibrium, with the

ultimate goal to efficiently compute such a stable state.

Motivated by the fact that shortest-path computations can be

substantially accelerated if the edge costs do not change too often,

we consider different best-response variants for STA. In sequential
best response, each step consists of only one agent changing their

strategy. In simultaneous best response, all agents choose their new
strategy for the next iteration at the same time. As an additional

variation orthogonal to this, we distinguish between impact-aware
or impact-blind best response. In the impact-aware variant (typically
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considered in game theory), each agent takes their own impact on

the cost function into account when considering to change their

strategy. In the impact-blind variant, agents make their decision on

the current cost of edges, not on the cost after their own change.

We note that this makes little difference in practical scenarios with

many agents where the impact of each individual agent on the cost

is negligible. This yields four variants for STA for all combinations

of sequential vs. simultaneous and impact-aware vs. impact blind;

see Section 3 for formal definitions and Table 1 for an overview.

For the impact-aware case, it follows from the more general

setting of congestion games (CG) that sequential best response

converges to an equilibrium [32]. For simultaneous best response,

however, we observe that there can be best-response cycles. We

additionally give an example of a best-response cycle in the case

where a group of only two equivalent agents change their strategy

simultaneously; see Section 4.1. For the impact-blind case, we show

that best response converges to an equilibrium, even in the simulta-

neous setting; see Section 4.2. This difference between impact-blind

and impact-aware is somewhat surprising, as they seem similar.

Moreover, it is in stark contrast to ATA, where impact-blindness

may cause best-response cycles even in the sequential setting.

Beyond the theoretical result, the convergence of the simultane-

ous and impact-blind variant allows fast computation of an equi-

librium. In each round, all agents change simultaneously and base

their choice on the same edge costs. Thus, we can use sophisticated

preprocessing techniques for path planning that are several or-

ders of magnitude faster than individual applications of Dijkstra’s

algorithm; see Section 5. In contrast, ATA has to use expensive

agent-by-agent updates or more complex iteration schemes that

can use simultaneous updates but only approximate an equilibrium.

In Section 6, we perform an experimental evaluation using real-

istic demand data for Stuttgart, Germany. Fewer than 20 iterations

suffice to find an equilibrium. In contrast, established ATA algo-

rithms are considered far from an equilibrium at this number of

iterations [7, 31]. Moreover, the employed shortest-path speedup

technique of customizable contraction hierarchies benefits from the

fact that STA reinforces a hierarchy of roads, leading to faster

queries in later iterations of STA. Using the right parametrization

of the cost function, we find routes that have only moderately

(less than 25%) longer travel times than free-flow shortest paths

while attaining considerably (more than two times) higher sharing

potential. We also look at a simple model for deriving bus lines

from traffic flows. We find that basing the bus lines on an STA

equilibrium rather than free-flow traffic reduces the total vehicle

operation time significantly. Though the model is too simplistic to

draw solid conclusions for real-world settings, it shows that STA

can be a useful tool for such applications.

Summary of Contributions.

• Introduction of synergistic traffic assignment (STA) as a way

to extract sharing potential for a set of traveler demands

• Theoretical analysis of the best-response process for different

variants of STA

• Practically efficient algorithm for finding an STA equilibrium

based on the theoretical insights

• Prototypical demonstration that STA equilibria identify high

sharing potential in realistic inputs with uses in line planning

2 RELATEDWORK
To the best of our knowledge, there is no prior work on synergistic

traffic assignment, i.e., traffic assignment with decreasing edge

cost functions. Thus, here we consider research on avoidant traffic

assignment (ATA) that may also be relevant for synergistic traffic

assignment. ATA is a well-studied problemwith decades of research

in the operations and traffic planning communities. Additionally,

ATA is often considered in game theory, as a prototypical example

of a non-cooperative congestion game in pure strategies [30, 32].

User Equilibrium. Wardrop [36] states that travelers in a road

network naturally act selfishly, changing their path if a different

path with a better travel time for themselves exists, even to the

detriment of others. An assignment in which no traveler can change

their path to their benefit is called a user equilibrium (UE). Beckmann

et al. [4] find that a UE always exists for ATA, which matches

a result from game theory about the existence of pure strategy

Nash equilibria in congestion games [32]. As traffic without central

control naturally tends to a UE, it is an important issue of traffic

analysis to compute UEs for a given network and traveler demand.

Simple Approaches to Finding a UE. A simple approach to finding

a UE is a process called iterated sequential best response, in which

one traveler at a time may change their path while other travelers’

paths are kept fixed. Edge costs are updated according to the change

of one traveler before continuing with the next traveler. Sequential

best response always converges to a UE [28, 32]. However, the

number of iterations until convergence can be exponential in the

number of travelers [13, 14].

In iterated simultaneous best response, each traveler chooses their

next path simultaneously, while edge costs are kept fixed. Then,

all paths are changed at once, before updating edge costs and re-

peating the process. While the simultaneous method needs fewer

edge cost updates than sequential best response, it does not always

converge. Instead, it may encounter best-response cycles where

travelers revert to a previous state in a cyclical manner [34]. Thus,

simultaneous best response is also not suited to find a UE for ATA.

Finding a UE in Practice. In practice, more sophisticated methods

find a UE by applying convex optimization to Beckmann’s transfor-
mation [4] of ATA into a convex program whose minimum is a UE.

A usual categorization [17, 31, 37] divides these algorithms into link-
based [18, 34], path-based [9, 16, 23, 24], and bush-based [2, 11, 29]

approaches. These algorithms perform simultaneous path updates

but they utilize the convexity of the problem to ensure progress

towards the UE and avoid best-response cycles. Note two limita-

tions common to these approaches: First, travelers are treated as

non-atomic, i.e., the load of a single O-D pair can be split among

multiple paths. Second, the algorithms iteratively approach the UE

in increasingly smaller steps but do not actually reach it.

Each algorithmmentioned here requires an edge cost update and

a re-computation of shortest paths in every iteration. The overhead

for these updates can be expected to dominate the total running

time. Buchhold et al. [7] show that a recent shortest-path speedup

techniques called customizable contraction hierarchies (CCH) can
adequately reduce running times for cost updates and shortest-path

queries to tenths of seconds per iteration for millions of O-D pairs.
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3 MODELS AND NOTATION
We define traffic assignment as a congestion game. Let [𝑘] =

{1, . . . , 𝑘} be a set of 𝑘 agents. In a congestion game there is a finite
set 𝐸 of available resources that are used by the agents. Each agent

𝑖 ∈ [𝑘] has a set of possible strategies 𝑃𝑖 where each strategy 𝑝 ∈ 𝑃𝑖
is a subset of resources, i.e., 𝑝 ⊆ 𝐸. A strategy profile is a vector
𝑆 = (𝑝1, . . . , 𝑝𝑘 ) of strategies such that 𝑝𝑖 ∈ 𝑃𝑖 for 𝑖 ∈ [𝑘]. The load
ℓ𝑒 (𝑆) of a resource 𝑒 ∈ 𝐸 with respect to a strategy profile 𝑆 is the

number of agents using 𝑒 , i.e., ℓ𝑒 (𝑆) = |{𝑝𝑖 ∈ 𝑆 | 𝑒 ∈ 𝑝𝑖 }|. Each
resource 𝑒 ∈ 𝐸 has a cost function 𝑐𝑒 : N → R, where 𝑐𝑒 (ℓ) is the
cost of resource 𝑒 given that it has load ℓ . The resulting cost for an

agent is the sum of the costs of all resources used by the agent. More

formally, we define the cost of a strategy 𝑝 ⊆ 𝐸 given a strategy

vector 𝑆 as cost(𝑝, 𝑆) = ∑
𝑒∈𝑝 𝑐𝑒 (ℓ𝑒 (𝑆)). Thus, for 𝑆 = (𝑝1, . . . , 𝑝𝑘 ),

the cost for agent 𝑖 ∈ [𝑘] is cost(𝑝𝑖 , 𝑆).
With this, one can use the common definitions for the Nash

equilibrium and best response. Before defining them formally, we

introduce the traffic assignment game, which also motivates less

common variants of these concepts. Colloquially speaking, in traffic

assignment, each agent chooses a path in a graph that gets them

from their origin to their destination, using the edges as resources.

More formally, let 𝐺 = (𝑉 , 𝐸) be a directed graph with a cost

function 𝑐𝑒 : N→ R for each edge. An origin–destination pair (O-D
pair) is a pair (𝑠, 𝑡) ∈ 𝑉 ×𝑉 with 𝑠 ≠ 𝑡 . For 𝑠, 𝑡 ∈ 𝑉 , an 𝑠𝑡-path is a

set of edges 𝑝 ⊆ 𝐸 such that the subgraph induced by 𝑝 contains

𝑠 and 𝑡 , all vertices except 𝑠 have exactly one incoming edge, and

all vertices except 𝑡 have exactly one outgoing edge. For a set of

O-D pairs 𝑋 = {(𝑠1, 𝑡1), . . . , (𝑠𝑘 , 𝑡𝑘 )}, the traffic assignment game,
is a congestion game where the edge set 𝐸 forms the resources

and the possible strategies for agent 𝑖 ∈ [𝑘] are the 𝑠𝑖𝑡𝑖 -paths,

i.e., 𝑃𝑖 = {𝑝 ⊆ 𝐸 | 𝑝 is an 𝑠𝑖𝑡𝑖 -path}. A traffic assignment game is

avoidant if the cost functions 𝑐𝑒 are non-decreasing, i.e., if more

traffic only increases cost. Conversely, it is synergistic if the cost
functions 𝑐𝑒 are non-increasing. We also use the terms avoidant

and synergistic for the more general case of congestion games.

3.1 Best Response
Consider a congestion game and let 𝑆 = (𝑝1, . . . , 𝑝𝑘 ) be a strategy
profile. For an agent 𝑖 ∈ [𝑘], we use 𝑆−𝑖 to denote the omission of

𝑖’s strategy. Moreover, for any alternative strategy 𝑝′
𝑖
∈ 𝑃𝑖 of agent

𝑖 , we use (𝑆−𝑖 , 𝑝′𝑖 ) to denote the replacement of 𝑝𝑖 with 𝑝′
𝑖
in 𝑆 , i.e.,

(𝑆−𝑖 , 𝑝′𝑖 ) = (𝑝1, . . . , 𝑝𝑖−1, 𝑝′𝑖 , 𝑝𝑖+1, . . . , 𝑝𝑘 ). Note that 𝑆 = (𝑆−𝑖 , 𝑝𝑖 ).
A best response of agent 𝑖 to a strategy profile 𝑆 = (𝑝1, . . . , 𝑝𝑘 ) is a

strategy 𝑝′
𝑖
∈ 𝑃𝑖 that minimizes cost(𝑝′

𝑖
, (𝑆−𝑖 , 𝑝′𝑖 )), which is the cost

for agent 𝑖 after they change their strategy from 𝑝𝑖 to 𝑝
′
𝑖
. We say

that agent 𝑖 is content with 𝑆 if 𝑝𝑖 is a best response to 𝑆 . If all agents

are content with 𝑆 , then 𝑆 is a Nash equilibrium. With sequential
best response, we refer to the process of changing the strategy of one
agent at a time to their best response with respect to the current

strategy profile. If this reaches an equilibrium, we say that the

process converges. Otherwise, we obtain a so-called best-response
cycle, in which the process indefinitely cycles through a repeating

sequence of strategy profiles (these are the only two options as

the state space is finite). The following theorem by Rosenthal [32]

states that the sequential best response defined above converges.

Theorem 3.1 (Rosenthal [32]). In a congestion game, sequential
best response converges to a Nash equilibrium.

As traffic assignment games are a special case of congestion

games, Theorem 3.1 also holds for our setting. This is algorithmi-

cally useful as it provides a way to compute an equilibrium. In each

step, one has to compute a shortest path in𝐺 for the O-D pair of the

currently considered agent. Unfortunately, this has the effect that

the costs of the edges change after every shortest-path computation,

obstructing the use of algorithmic shortest-path techniques that

are based on pre-computations. We overcome this by incorporating

two types of adjustments to the above best-response variant.

3.2 Simultaneous Best Response
Simultaneous best response is a process where, in every step, all

agents change their strategy to their best response with respect

to the current strategy profile. While this feels like a step in the

right direction in the sense that the strategy profile changes less

frequently in relation to the number of shortest-path computations,

there are two major downsides. First, we show in Section 4.1 that

this leads to a best-response cycle. This is not very surprising as, in

the synergistic setting, two agents may attempt to join each other

and thereby avoid each other due to simultaneously changing their

strategy. We extend this by also providing a best-response cycle

in a setting that is almost sequential in the sense that only two

equivalent agents choose their new path together; see Section 4.1.

The second downside is that the simultaneous setting alone

is not enough to let us use pre-computation techniques for the

shortest-path queries. The reason for this is that the cost of an edge

𝑒 for agent 𝑖 depends on whether 𝑖 is currently using it. To be more

precise, if 𝑆 = (𝑝1, . . . , 𝑝𝑘 ) is the current strategy profile and 𝑒 ∈ 𝑝𝑖 ,

then the cost of 𝑒 is 𝑐𝑒 (ℓ (𝑆)). If, however, 𝑒 ∉ 𝑝𝑖 , then the cost of 𝑒

is 𝑐𝑒 (ℓ (𝑆) + 1) as 𝑖 switching to a strategy that uses 𝑒 would mean

that the load of 𝑒 increases by 1. In other words, the best response

aims to minimize cost(𝑝′
𝑖
, (𝑆−𝑖 , 𝑝′𝑖 )), i.e., the cost of the edges is not

based on 𝑆 but on the updated profile (𝑆−𝑖 , 𝑝′𝑖 ). To resolve this, we

introduce a best-response variant in which the agents ignore the

impact of their own change. In ATA this setting of simultaneous

updates based on the costs after the last round is sometimes done

under the premise of capacity restraint [21, 34]. For a resource

selection game, Harder et al. [20] considered a similar concept and

used the terms impact-aware and impact-blind. Following this, we

also call the best-response variant defined above and the resulting

Nash equilibrium impact-aware.

3.3 Impact-Blind Best Response
An impact-blind best response of agent 𝑖 to a strategy profile 𝑆 =

(𝑝1, . . . , 𝑝𝑘 ) is a strategy 𝑝′
𝑖
∈ 𝑃𝑖 that minimizes cost(𝑝′

𝑖
, 𝑆). All

definitions for the impact-aware setting can be directly translated

(impact-blind Nash equilibrium, sequential/simultaneous, conver-

gence, best-response cycle). We note that in practical settings, the

impact of a single agent changing is usually not very high. Fortu-

nately, the change from impact-aware to impact-blind has the effect

that even simultaneous best response converges. We note that this

is specific to the synergistic setting, which makes intuitive sense for

the following reason; see Section 4.2 for details. In the synergistic

setting, the own impact of changing the strategy only reinforces the
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Table 1: Overview of our results on the best-response variants
of congestion games (CG) and traffic assignment (TA).

sequential simultaneous

impact-aware

cost(𝑝′
𝑖 , (𝑆−𝑖 , 𝑝′

𝑖 ) )
converges (CG)

Theorem 3.1 [32]

cycles (STA)

Observation 1

impact-blind

cost(𝑝′
𝑖 , 𝑆 )

converges (synergistic CG)

Theorem 4.2

decision, which leads to slightly higher stability of the impact-blind

variant (the converse is true for the avoidant setting). Nonethe-

less, we find it quite surprising that this seemingly minor effect is

sufficient to obtain convergence rather than a best-response cycle.

4 GAME ANALYSIS
Herewe analyze the different best-response variants for STA; see Ta-

ble 1 for an overview. We start with the first row (impact-aware)

in Table 1. For the sequential case (first column), convergence al-

ready follows from Rosenthal’s results [32] on congestion games;

recall Theorem 3.1. For the simultaneous case (second column), we

give a best-response cycle in Section 4.1. We additionally give a

best-response cycle for a variant that lies between the simultaneous

and the sequential setting. For the second row (impact-blind), we

show in Section 4.2 that for synergistic congestion games (includ-

ing STA) best response converges to an equilibrium, even in the

simultaneous setting. This notably distinguishes STA from ATA,

which has best-response cycles in all cases except for the sequential

impact-aware setting covered by Theorem 3.1.

4.1 Best-Response Cycles
Simultaneous best response does not converge for synergistic traffic

assignment, as agents simultaneously attempting to swap towards

each other makes it so that they essentially swap past each other

and never meet. The example in Figure 1 yields the following ob-

servation; see full paper [6] for a proof.

Observation 1. Simultaneous and impact-aware best response
for synergistic traffic assignment has a best-response cycle.

In the following, we additionally consider a best-response variant

in which only agents with the same O-D pair change their strategy

simultaneously. We additionally assume that the agents know of

each other, i.e., in their response valuation, they account for the fact

that all agents with the same O-D pair will make the same choice.

Formally, we consider two agents to be equivalent if they have

the same O-D pair and we call the resulting equivalence classes

groups. Then group-simultaneous best response refers to a process
in which all agents from one group simultaneously change their

strategy, while the different groups are considered sequentially.

Consider a step in which one group changes and assume without

loss of generality that this group consists of the first 𝑎 agents,

i.e., the group is the set [𝑎] ⊆ [𝑘]. Given a strategy profile 𝑆 =

(𝑝1, . . . , 𝑝𝑘 ) and a strategy 𝑝′ ∈ 𝑃1 that is valid for the group [𝑎],
let (𝑆−[𝑎] , 𝑝′) = (𝑝′, . . . , 𝑝′, 𝑝𝑎+1, . . . , 𝑝𝑘 ) be the strategy profile

1
2−→ 0

1
2−→ 0

𝜀

𝜀

𝑠1

𝑠2

𝑡1

𝑡2

A

B
Figure 1: Graph (left) with a best-response cycle (right) for si-
multaneous impact-aware best response. The two bold edges
have cost 1 for load below 2 and cost 0 for load at least 2. Two
edges have cost 𝜺. All other edges have cost 0.

where all agents in [𝑎] change their strategy to 𝑝′. The group-
impact-aware best response for agents in [𝑎] is the strategy 𝑝′ ∈ 𝑃1
for which cost(𝑝′, (𝑆−[𝑎] , 𝑝′)) is minimized. We get the following.

Theorem 4.1. Group-simultaneous and group-impact-aware best
response for synergistic traffic assignment has a best-response cycle,
even if the largest group has size 2.

Proof sketch. Consider the graph in Figure 2 (left) with the

O-D pairs (𝑠𝑖 , 𝑡𝑖 ) for 𝑖 ∈ [4]. Note that the agents 1 and 2 have the

same O-D pair and thus form a group. Most edge costs are constant

(indicated by the numbers, 0 if there is no number), except for the

three bold edges. Here, a cost of 𝑎 ℓ→𝑏 indicates that the cost is 𝑎

for loads below ℓ and the cost is decreased to 𝑏 for load at least ℓ .

Following the figure, we refer to the agents as blue (1 and 2), red

(3), and orange (4). Also, we refer to the path from 𝑠1 to 𝑡1 with the

three bold edges as horizontal path.
The best-response process cycles through the four configurations

shown in Figure 2 (right). The argument is roughly as follows. Red

and orange can either go to the horizontal path early (configuration

A and B) or late (configuration C and D). In the early case, blue has

an incentive to use the horizontal path. However, blue using the

horizontal path incentivizes red and orange to go the horizontal

path late. See full paper [6] for a full proof. □

Concerning the best-response variants in Table 1, the group-

simultaneous and group-impact-aware variant lies between sequen-

tial and simultaneous. Moreover, it lies above impact-aware in the

sense that the agents are not only aware of their own impact but

also of that of equivalent agents. We note that we find Theorem 4.1

somewhat surprising as the grouped setting is quite close to the

sequential setting, in which best response converges. We only need

groups of size 2, which makes the setting almost sequential. More-

over, using impact-aware but not group-impact-aware best response

would also make it equivalent to the sequential setting for the fol-

lowing reason: In the impact-aware variant, the group as a whole

would swap if and only if the first agent of the group would swap

individually. Moreover, for later agents of the group, the previously

swapped agents only reinforce the choice.

4.2 Convergence of Impact-Blind Best Response
Here, we show that impact-blind best response converges to an

equilibrium for synergistic congestion games. This is particularly

interesting for the simultaneous variant, but our proof also holds for
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5
3−→ 1 7

3−→ 15
3−→ 1

20

9 10

9 10

20

9 10

9 10

105 5 7

20

9 10

9 10

101 1 7

20

9 10

9 10

105 5 1

20

9 10

9 10

105 5 7

𝑠1, 𝑠2

𝑠3

10
𝑡1, 𝑡2

𝑠4

𝑡3

𝑡4

A B

CD

Figure 2: Graph (left) with a best-response cycle (right) for Theorem 4.1. Edges are implicitly oriented from left to right.

the sequential setting. Note that the requirement of the congestion

game being synergistic is crucial, i.e., the cost of a resource must

not increase with a higher load. For non-synergistic congestion

games like ATA the impact blindness is in fact detrimental. Thus,

their impact-blind formulations can run into best-response cycles.

Our proof uses a potential function 𝜙 : 𝑃1 × · · · × 𝑃𝑘 → R that

maps a strategy profile 𝑆 to a number. Assume agents change their

strategy using impact-blind best response, yielding a new strategy

profile 𝑆 ′. We show that in this case 𝜙 (𝑆 ′) < 𝜙 (𝑆) holds. As the
potential cannot decrease indefinitely (the strategy space is finite),

the process must reach an equilibrium.

We use the potential function introduced by Rosenthal [32] for

the sequential and impact-aware setting. It sums for each resource

the cost of all loads up to the actual load. To make this more formal,

recall that 𝑐𝑒 (ℓ) is the cost of resource 𝑒 for load ℓ and that ℓ𝑒 (𝑆)
refers to the load of 𝑒 given the strategy profile 𝑆 . The edge potential
𝜙𝑒 (𝑆) of 𝑒 is defined as 𝜙𝑒 (𝑆) =

∑ℓ𝑒 (𝑆 )
ℓ=0

𝑐𝑒 (ℓ). The potential 𝜙 is the

sum over all resources, i.e., 𝜙 (𝑆) = ∑
𝑒∈𝐸 𝜙𝑒 (𝑆).

Our proof that 𝜙 decreases with each round of impact-blind

best response works roughly as follows. Given strategy profile

𝑆 = (𝑝1, . . . , 𝑝𝑘 ), each agent 𝑖 changes their strategy from 𝑝𝑖 to

𝑝′
𝑖
such that cost(𝑝′

𝑖
, 𝑆) is minimized. With this change, agent 𝑖

anticipates that their cost decreases by Δ𝑖 = cost(𝑝𝑖 , 𝑆)−cost(𝑝′𝑖 , 𝑆).
Note that the actual cost decrease can be different as the agent did

not factor in their own impact, or even the impact of the other agents

changing at the same time in the simultaneous setting. However, we

can show that the potential decreases at least by the total anticipated

cost of all agents. As Δ𝑖 ≥ 0 (otherwise the agent would not have

changed strategy), this results in a potential decrease.

Theorem 4.2. In a synergistic congestion game, impact-blind best
response (simultaneous or sequential) converges to an equilibrium.

Proof. We consider the general setting where each round of

best response consists of any non-empty subset of agents changing

their strategy. This in particular includes the simultaneous and

sequential variants. Let 𝑆 = (𝑝1, . . . , 𝑝𝑘 ) be the current strategy

profile and let 𝑆 ′ = (𝑝′
1
, . . . , 𝑝′

𝑘
) be the resulting profile after the

change. Let Δ𝑖 be the anticipated cost decrease for agent 𝑖 as defined

above and let Δ =
∑𝑘
𝑖=1 Δ𝑖 . As Δ𝑖 > 0 for some 𝑖 , we also have Δ > 0.

We now change perspective on the anticipated cost decrease from

the agents to the resources. For 𝑒 ∈ 𝑝𝑖 \ 𝑝′𝑖 , agent 𝑖 changed from

using 𝑒 to not using 𝑒 . Thus, the resource 𝑒 contributes 𝑐𝑒 (ℓ𝑒 (𝑆))
positively to Δ𝑖 . Conversely, if 𝑒 ∈ 𝑝′

𝑖
\ 𝑝𝑖 , then 𝑒 contributes

−𝑐𝑒 (ℓ𝑒 (𝑆)) to Δ𝑖 . To define the overall contribution of 𝑒 to Δ, note
that the load of 𝑒 decreased by ℓ𝑒 (𝑆) − ℓ𝑒 (𝑆 ′). Each of these load

decreases corresponds to an agent anticipating a cost decrease

of 𝑐𝑒 (ℓ𝑒 (𝑆)), thus we define the anticipated cost decrease of an

edge 𝑒 as Δ𝑒 = 𝑐𝑒 (ℓ𝑒 (𝑆)) · (ℓ𝑒 (𝑆) − ℓ𝑒 (𝑆 ′)). It directly follows that∑
𝑒∈𝐸 Δ𝑒 = Δ > 0.

Recall that our goal is to show that 𝜙 (𝑆) −𝜙 (𝑆 ′) > 0. For this, we

show that for every resource 𝑒 ∈ 𝐸 it holds that𝜙𝑒 (𝑆)−𝜙𝑒 (𝑆 ′) ≥ Δ𝑒 ,
which implies 𝜙 (𝑆) −𝜙 (𝑆 ′) ≥ Δ > 0. To show 𝜙𝑒 (𝑆) −𝜙𝑒 (𝑆 ′) ≥ Δ𝑒 ,
note that the potential difference is

𝜙𝑒 (𝑆) − 𝜙𝑒 (𝑆 ′) =
ℓ𝑒 (𝑆 )∑︁
ℓ=0

𝑐𝑒 (ℓ) −
ℓ𝑒 (𝑆 ′ )∑︁
ℓ=0

𝑐𝑒 (ℓ) .

First consider the case that ℓ𝑒 (𝑆) ≥ ℓ𝑒 (𝑆 ′), i.e., decreasing load.

Then we get the following, where the inequality holds as the sum

has ℓ𝑒 (𝑆) − ℓ𝑒 (𝑆 ′) terms and 𝑐𝑒 is non-increasing

𝜙𝑒 (𝑆)−𝜙𝑒 (𝑆 ′) =
ℓ𝑒 (𝑆 )∑︁

ℓ=ℓ𝑒 (𝑆 ′ )+1
𝑐𝑒 (ℓ) ≥ (ℓ𝑒 (𝑆)−ℓ𝑒 (𝑆 ′)) ·𝑐𝑒 (ℓ𝑒 (𝑆)) = Δ𝑒 .

For the case ℓ𝑒 (𝑆) ≤ ℓ𝑒 (𝑆 ′), we analogously obtain

𝜙𝑒 (𝑆)−𝜙𝑒 (𝑆 ′) = −
ℓ𝑒 (𝑆 ′ )∑︁

ℓ=ℓ𝑒 (𝑆 )+1
𝑐𝑒 (ℓ) ≥ (ℓ𝑒 (𝑆)−ℓ𝑒 (𝑆 ′))·𝑐𝑒 (ℓ𝑒 (𝑆)) = Δ𝑒 ,

which concludes the proof. □

As STA is a synergistic congestion game, the above theorem

holds for STA. In the remainder of the paper, we utilize the fact that

the simultaneous variant of impact-blind best response converges.

5 STA ALGORITHM
In a traffic assignment gamewith converging best response, comput-

ing an equilibrium essentially boils down to iterated shortest-path

computations. To make this efficient, one can potentially apply

speed-up techniques that have been developed in the context of

route planning [3]. These techniques exploit the fact that the graph
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does not change by pre-computing auxiliary information once in

the beginning, which is then used to enable highly efficient queries.

For traffic assignment, the graph topology does not change be-

tween shortest-path queries, but the edge costs change depending

on the load. Fortunately, there are speed-up techniques that sup-

port such cost changes [10, 12], which work in three phases. The

first phase is a so-called metric-independent preprocessing, where
pre-computations are done based only on the topology of the graph,

ignoring the edge costs. The second phase is called customization
and performs pre-computations based on the edge costs. The third

phase are the shortest-path queries, which are highly efficient due

to the data structures computed in the first two phases.

Concerning the different variants for STA, impact-blind and si-

multaneous best response is particularly suited for this algorithmic

approach as all agents do shortest-path computations with respect

to the same cost function once before updating it due to the changed

load. This is the reason why we focus on impact-blind and simul-

taneous best response for computing STA equilibria. We note that

this is viable as this best-response variant converges for STA due

to Theorem 4.2, which is not true for ATA.

Algorithm Description. With these preliminary considerations,

we are now ready to state our algorithm. We have a load vector
storing the load of each edge in the current traffic assignment. It

is initialized with all 0s. Moreover, we do the metric independent

preprocessing once in the beginning. Then, in each iteration, we

first do the customization based on the edge costs defined by the

current load vector. Afterwards, the resulting data structure is used

to compute a shortest path for every O-D pair. Finally, the load

vector is updated according to the resulting paths. This is iterated

until no agent changes their path, which is equivalent to checking

whether the load vector changed, due to the proof of Theorem 4.2.

Implementation Details. There are different variants of the above-
mentioned three-phase approach with different trade-offs between

the running times of the different phases. In our setting, the bottle-

neck is the query. We thus use a so-called customizable contraction
hierarchy (CCH) [12], which provides faster queries at the cost of

slower customization compared to CRP [10]. Explaining CCH is

beyond the scope of this paper and we refer the reader to the re-

cent survey [5]. For readers familiar with CCH, we want to briefly

mention the details of our implementation. We compute the nested

dissection order with InertialFlowCutter [19]. We use perfect cus-

tomization, elimination tree queries, and all improvements stated by

Bläsius et al. [5]. We do not use parallelization or SIMD operations.

6 EXPERIMENTAL EVALUATION
We provide experimental results on the convergence and resulting

traffic flows of our STA algorithm using real-world data and an im-

plementation in C++17.
1
We compile with gcc 13.3.1 using -O3. We

use a machine with Fedora 39 (kernel 6.8.11), 32GiB of DDR4-4266

RAM, and an AMD Ryzen 7 PRO 5850U CPU clocked at 4.40Ghz.

6.1 Inputs and Methodology
We evaluate our algorithm on the road network of the city of

Stuttgart, Germany, and the surrounding region. We use a road

1
The code is available at https://github.com/molaupi/synergistic-traffic-assignment.

Table 2: Four traffic Scenarios used for the evaluation of STA.

Scenario Analysis period O-D pairs

S-morn Tue., 7:30-8:30am 32 034

S-even Tue., 4:30-5:30pm 38 021

S-day a whole Tuesday 453 926

S-week a whole week 2 946 810

network based on the OSM network of Germany
2
and the OSM re-

lation of the Stuttgart city limits.
3
We only consider travel demand

within these city limits but allow travelers to also use major streets

in the surrounding area. For this, we include roads of OSM rank

at least tertiary link4 in a rectangular box around the city that is 3

times the width and height of the bounding box of the city limits.

The resulting graph contains 70 915 vertices and 138 862 edges. We

retrieve traversal times 𝑑 (𝑒) for each edge 𝑒 using the length and

speed limit of each road segment encoded in the OSM data.

Our demand data [33] models travel demand in Stuttgart for a

whole week and was originally forecast using mobiTopp [26, 27],

which was calibrated from a household travel survey conducted in

2009/2010 [35]. We use the same test scenarios that Buchhold et al.

[7] use to evaluate ATA algorithms, i.e., a typical morning peak, a

typical evening peak, a typical day and a whole week; see Table 2.

The cost function for STAmay significantly depend on the partic-

ular application of STA, e.g., the type of vehicle used. Here we use a

simple function with a single tuning parameter 𝑟 ∈ [0, 1], which we

call the selfishness parameter. This allows us to interpolate between
ignoring sharing (𝑟 = 1) and aggressively optimistic sharing (𝑟 = 0).

Let 𝑑 (𝑒) and ℓ𝑒 be the travel time (assuming free flow) and the load

of edge 𝑒 . We define the cost 𝑐𝑟𝑒 (ℓ) of 𝑒 as

𝑐𝑟𝑒 (ℓ𝑒 ) = 𝑟 · 𝑑 (𝑒) + (1 − 𝑟 ) · 𝑑 (𝑒)
ℓ𝑒 + 1

.

6.2 Sharing Evaluation
Due to our simple cost function, we evaluate sharing using quan-

tities that are independent of the concrete definition of 𝑐𝑟𝑒 . Let

dist(𝑢, 𝑣) be the length of the shortest path between 𝑢 and 𝑣 with

respect to the travel time 𝑑 . Further, we define 𝐷 as a natural ex-

tension of 𝑑 on sets of edges, i.e., 𝐷 (𝑝) = ∑
𝑒∈𝑝 𝑑 (𝑒). Recall that 𝑝𝑖

denotes the path of agent 𝑖 ∈ [𝑘] and ℓ𝑒 is the load on edge 𝑒 .

We define the average stretch as

1

𝑘

∑︁
𝑖∈[𝑘 ]

𝐷 (𝑝𝑖 )
dist(𝑠, 𝑡) .

The average sharing is

1

𝑘

∑︁
𝑖∈[𝑘 ]

∑
𝑒∈𝑝𝑖 𝑑 (𝑒) · (ℓ𝑒 − 1)

𝐷 (𝑝𝑖 )
,

i.e., the sharing of each agent 𝑖 ∈ [𝑘] is the number of other agents

they share their path with, averaged over the whole path. In other

words, if you pick a random point during 𝑖’s journey, then 𝑖’s sharing

value is the expected number of other agents on 𝑖’s current edge.

As there is also sharing without STA (i.e., for 𝑟 = 1), we define the

normalized average sharing as the average sharing relative to the

average sharing obtained for 𝑟 = 1.

2
Available at https://download.geofabrik.de/europe/germany.html.

3
See https://www.openstreetmap.org/relation/2793104.

4
See https://wiki.openstreetmap.org/wiki/Key:highway.
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Figure 3: The normalized average sharing in relation to the
average stretch in the morning scenario for different values
of 𝒓 ; the numbers at the points indicate 𝒓 .
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Figure 4: Fraction of agents that share a fraction of at least
𝒙 of their travel time with at least ℓ other agents. We use
ℓ ∈ {1, 10, 100} and show values for 𝒓 = 0 (high sharing) and
𝒓 = 1 (free flow) in the S-morn scenario.

Figure 3 shows the trade-off between average stretch and normal-

ized average sharing for different choices of 𝑟 . Stretch and sharing

both increase with lower 𝑟 , seemingly in a linear relation. However,

the slope is substantially below 1, indicating that slightly longer

paths can result in higher sharing. For instance, at 𝑟 ≈ 0.0075, the

sharing can be doubled at the cost of only 1.25 times longer paths.

Figure 4 analyzes the distribution of sharing potential along

riders’ paths. The plot has one curve per pair of selfishness 𝑟 ∈ {0, 1}
and load threshold ℓ ∈ {1, 10, 100}. Each curve shows the fraction

of agents (y-axis) for whom at least a fraction 𝑥 of their path (x-axis)

is shared with at least ℓ others in the 𝑟 STA flow. The curves for

STA with strong sharing (𝑟 = 0) stay high even for large values of

ℓ , particularly in comparison to just using individual shortest paths

(𝑟 = 1). Thus, most agents achieve high sharing on a large portion

of their path, which is important for applications like ride sharing.

6.3 Performance Evaluation
Our theoretical results prove convergence, but give no guarantees

for how many iterations are necessary. Thus, in this section, we

evaluate the number of iterations and running times in practice.

Figure 5 shows the number of iterations depending on 𝑟 . Smaller

values of 𝑟 require more iterations but even for 𝑟 = 0, fewer than 20

iterations suffice. The number of agents appears to have no effect.
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Figure 5: The number of iterations for the STA best response
to converge. The reported numbers include the last iteration
that did not result in a change.
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Figure 6: Time spent for shortest-path computations and load
accumulation per iteration in the morning scenario.

To give an impression of the overall running times, the entire

process with 𝑟 = 0 takes about one second for S-morn and S-even,
ten seconds for S-day, and a minute for S-week, respectively.

In Figure 6, we can see that in later iterations, the shortest-path

queries become noticeable faster. For 𝑟 = 0, the time spent on

queries almost halves after only 6 iterations. As the number of O-D

pairs stays the same, this implies that the CCH (with perfect cus-

tomization) can leverage the increased sharing and smaller number

of relevant edges for faster queries.

As claimed previously, we observe that shortest-path compu-

tations are indeed the bottleneck compared to customization. For

instance, for 𝑟 = 0, the smallest scenario (S-morn), and the fastest

iteration, the time spent on shortest-path computations is roughly

37ms. Meanwhile, an average of only 10.5ms is spent on customiza-

tion per iteration. It thus makes sense to opt for a CCH variant

with more efficient queries at the cost of slower customization. In

the future, shortest-path queries can be optimized further, e.g., by

employing thread- and instruction-level parallelism (cf. [7]).

6.4 Bus Line Planning
As a proof of concept for the merits of STA, we use STA in a simple

bus line planning problem. We propose a greedy path-based line

planning algorithm to find trunk bus lines for a feeder-trunk system.

We show that bus lines based on STA paths reduce total vehicle

travel time compared to lines based on free-flow (FF) paths. Note

that this proof-of-concept model is not optimized for realism but for

simplicity while grasping the effects of sharing between travelers.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

358



Bus Line Problem. We consider a line planning problem where

we are given a road network and travel demands. The goal is to find

bus lines subject to a bus operation time budget such that the total

vehicle travel time (for buses and feeder vehicles) is minimized. We

assume a road network 𝐺 = (𝑉 , 𝐸) with travel times 𝑑 (𝑒) for every
𝑒 ∈ 𝐸, a set of O-D pairs𝑋 = {(𝑠𝑥 , 𝑡𝑥 )}, a bus operation time budget

𝐵, a fixed service frequency 𝑓 for every line, and an operation time

window [0,𝑇 ] s.t. every journey fits within that window.

We consider a bus line 𝐿 to be a simple path in 𝐺 . Buses travel

the length of 𝐿 from start to finish. Let 𝛿𝐿 be the travel time from

start to finish. The total vehicle time needed to service 𝐿 during

[0,𝑇 ] with frequency 𝑓 is 𝑇𝐿 = 𝑇 · 𝑓 · 𝛿𝐿 .
Travelers may enter and exit a bus anywhere on the line. For any

part of a journey that is not covered by bus lines, the traveler has to

use a feeder (e.g., a taxi). A feeder is immediately available between

any two places but it can never be shared with other travelers.

Our goal is to minimize total vehicle operation time (TVOT), i.e.,
the sum of operation times of all buses and feeder vehicles. Without

any buses, every traveler uses the feeder system to go directly from

their origin to their destination without any sharing. This gives us

a baseline TVOT that we then aim to reduce by introducing buses.

More specifically, we want to find a set of bus lines L such that the

TVOT is minimized but the sum of bus operation times fits into the

bus operation time budget 𝐵, i.e.,
∑
𝐿∈L 𝑇𝐿 ≤ 𝐵.

Algorithm. We use a simple path-based bus line planning algo-

rithm to compare lines based on STA paths to lines based on FF

paths. As input, the algorithm takes a set of paths 𝑃 , containing a

path 𝑝𝑥 from 𝑠𝑥 to 𝑡𝑥 for every O-D pair 𝑥 ∈ 𝑋 . Let 𝑁𝑃 (𝑒) be the
number of paths in 𝑃 that contain 𝑒 . We greedily construct lines:

A new line 𝐿 is started at the edge 𝑒 ∈ 𝐸 with the largest 𝑁𝑃 (𝑒).
We extend 𝐿 forwards by iteratively appending edges at the end,

always choosing the edge 𝑒′ with the largest 𝑁𝑃 (𝑒′). We stop ex-

tending 𝐿 forwards if there is no next edge with 𝑁𝑃 (𝑒′) > 0. We

then extend the line backward analogously.

Then, for each path 𝑝 ∈ 𝑃 that overlaps with 𝐿, we remove 𝑝

from 𝑃 , slice the part covered by 𝐿 out of 𝑝 , and add the remaining

subpaths of 𝑝 back to 𝑃 . We update 𝑁𝑃 (𝑒) for 𝑒 ∈ 𝐸 accordingly.

Note that we do this for only a subset of paths such that a fixed

seating capacity of buses is not exceeded anywhere on the line.

We keep generating new lines until all traveler demand is covered

by bus lines, i.e., until 𝑃 becomes empty. We use a knapsack solver

to choose a subset of lines L that fits into the operation time budget

𝐵 and maximizes traveler coverage.

Evaluation. We evaluate bus lines for the S-morn instance (cf. Ta-
ble 2). We assume buses with a capacity of 80 and a fixed service

frequency of 𝑓 = 1/10min. For the input paths 𝑃 , we use STA paths

with different values of the selfishness parameter 𝑟 (see Section 6.1),

with 𝑟 = 1 being equivalent to using FF paths. For simplicity’s sake,

we restrict each traveler to their input path and allow them to only

use bus lines with which they overlap during line construction.

In Figure 7, we show the TVOT for different bus budgets and

different selfishness 𝑟 ∈ {0, 0.01, 1}. Note that with a budget of

𝐵 = 0 h and selfishness of 𝑟 = 1, travelers use only feeder vehicles

on shortest paths, giving us the baseline TVOT of about 6600 h.

Unsurprisingly, bus lines reduce the TVOT for any value of 𝑟 .

Thus, we consider the minimal TVOT for different values of 𝑟 .
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Figure 7: Total vehicle operation time (in hours) for varying
bus budgets and 𝒓 ∈ {0, 0.01, 1}.

As previously stated in Section 6.2, STA paths are longer with

smaller selfishness. Since we restrict travelers to their input paths

even when using feeder vehicles, these longer paths result in a

larger TVOT with smaller selfishness 𝑟 if the bus budget is small.

This effect is particularly strong for 𝑟 = 0, which is why we focus

on the comparison between 𝑟 = 0.01 and 𝑟 = 1 (FF) in the following.

Given a large enough budget, the improved sharing with STA

leads to better bus lines which make up for the longer paths and

reduce the TVOT to smaller values than FF-based lines. At a bus

budget of 𝐵 = 1800 h, STA-based lines with 𝑟 = 0.01 lead to a

minimum TVOT of 2140 h while FF-based lines require at least

2641 h. Thus, the FF-based lines require more than twice as much

additional feeder service (841 h) compared to the STA-based lines

(340 h). This reduction of about 500 h is equivalent to 7.5% of the

baseline TVOT for using only feeder vehicles.

7 CONCLUSIONS AND FUTUREWORK
We have demonstrated that synergistic traffic assignment is an

interesting game-theoretic concept that allows fast computations

of equilibria. These equilibria seem relevant for applications in

the context of envisioned software-defined transportation systems.

A lot remains to be done there. Cost functions could try to bet-

ter model costs and behavior of agents (perhaps using simulation

or machine learning). More sophisticated algorithms to interpret

the equilibria would take into account actually available vehicles

and constraints on using them. Perhaps more interestingly, agents

could use equilibrium information (based on historical data) to

look for routes and vehicles worth sharing. This brings us back to

the interesting algorithmic question of how STA equilibria can be

computed/approximated in a dynamic fashion.
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