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ABSTRACT
Monitoring Machine Learning (ML) models in production environ-
ments is crucial, yet traditional approaches often yield verbose,
low-interpretability outputs that hinder effective decision-making.
We propose a cognitive architecture for ML monitoring that applies
feature engineering principles to agents based on Large Language
Models (LLMs), significantly enhancing the interpretability of mon-
itoring outputs. Central to our approach is a Decision Procedure
module that simulates feature engineering through three key steps:
Refactor, Break Down, and Compile. The Refactor step improves
data representation to better capture feature semantics, allowing
the LLM to focus on salient aspects of the monitoring data while re-
ducing noise and irrelevant information. Break Down decomposes
complex information for detailed analysis, and Compile integrates
sub-insights into clear, interpretable outputs. This process leads
to a more deterministic planning approach, reducing dependence
on LLM-generated planning, which can sometimes be inconsistent
and overly general. The combination of feature engineering-driven
planning and selective LLM utilization results in a robust decision
support system, capable of providing highly interpretable and ac-
tionable insights. Experiments using multiple LLMs demonstrate
the efficacy of our approach, achieving significantly higher accuracy
compared to various baselines across several domains.
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1 INTRODUCTION
Monitoring Machine Learning (ML) models in production environ-
ments is a critical task, as model performance can degrade over time
due to various factors [3, 4]. Traditional monitoring approaches,
such as distribution drift detection and feature attribution [7, 9],
while important, often require substantial technical expertise to in-
terpret and act upon. As the number of deployed models increases,
the time required for thorough analysis of each model’s perfor-
mance becomes a significant bottleneck in maintaining up-to-date
and reliable ML systems. A pressing question emerges: can we lever-
age Large Language Models (LLMs) to automate and enhance the
monitoring of ML models? Specifically, can LLMs analyze the out-
puts of monitoring tools, interpret these results, and relate them to
the dataset to provide meaningful, actionable insights? This capabil-
ity would enable the generation of detailed, interpretable reports on
model issues, facilitating crucial decisions such as model retraining,
new data labeling, or model replacement. While established moni-
toring tools like Alibi Detect1 provide valuable technical metrics
(e.g., drift scores, SHAP values), interpreting these outputs often re-
quires significant expertise. There is an opportunity to complement
them by making their outputs more interpretable and actionable
through natural language processing. To address this challenge,
we propose a novel cognitive architecture for ML monitoring that
applies feature engineering principles to LLM-based agents, signifi-
cantly enhancing the interpretability of monitoring outputs. Our
approach, termed CAMA (Cognitive Architecture for Monitoring
Agent), combines structured memory components with a sophis-
ticated decision procedure to generate highly interpretable and
actionable insights (see Figure 1).

Central to our architecture is the Decision Procedure (DP) mod-
ule, which implements a feature engineering-inspired approach
through three key steps:
• Refactor: Improves data representation to better capture fea-
ture semantics, allowing the LLM to focus on salient aspects
of the monitoring data while reducing noise.
• Break Down: Decomposes complex information for detailed
analysis, enabling comprehensive understanding of individ-
ual features and their interactions.

1https://github.com/SeldonIO/alibi-detect
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Cognitive Architecture for ML monitoring
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Figure 1: Cognitive architecture for ML monitoring. The sys-
tem integrates Procedural (PM), Episodic (EM), Semantic (SM),
andWorking (WM) Memory. The central Decision Procedure
(DP) implements a feature engineering-inspired approach:
Refactor, Break Down, and Compile. SM stores reference data
[𝑋train, 𝑦train], the ML model, and dataset descriptions. EM
captures current test data [𝑋 𝑗

test, 𝐼
𝑗 ] and insights. WM facili-

tates information exchange. PM sets the LLM and agent code.
This architecture enhances monitoring output interpretabil-
ity, providing clear, actionable insights for human operators.

• Compile: Integrates sub-insights into clear, interpretable out-
puts, providing a holistic view of the model’s performance.

This process leads to amore deterministic planning approach, reduc-
ing dependence on LLM-generated planning, which can sometimes
be inconsistent and overly general. Our architecture incorporates
principles from cognitive science, particularly the structured mem-
ory and thinking processes inspired by human cognition [11]. This
approach ensures efficiency while maintaining the capability for
deep, thoughtful analysis when required. The effectiveness of our
approach is demonstrated through experimental evaluations using
four different LLMs, ranging from smaller models like llama-3.2-1b
to large-scale models such as llama3-70b [12] and gpt-4o-mini. Our
method, CAMA, consistently outperforms various baselines across
different metrics. In our experiments, we work with three distinct
datasets with different level of complexity designed to simulate real-
world distribution drift scenarios. These datasets represent diverse
domains in financial services and customer’s behavior prediction,
allowing us to demonstrate the versatility and robustness of our

approach in handling various types of distribution shifts commonly
encountered in production environments.

Our contributions are the following:
• The development of a cognitive architecture for monitoring
ML models that enhances the interpretability and actionabil-
ity of monitoring reports.
• A novel decision procedure that applies feature engineering
principles to LLM-based analysis, resulting in more deter-
ministic and reliable planning.
• A comprehensive evaluation demonstrating the superiority
of our approach across different LLM models and metrics,
using datasets that mimic real-world distribution drift chal-
lenges.

2 RELATEDWORK
Various prompting and planning techniques have been investigated
to enhance the decision-making capabilities of LLMs. This section
covers key methodologies relevant to our approach, highlighting
their strengths and limitations, and contrasting them with our
adaptive cognitive architecture.

2.1 Direct Prompting Techniques
Prompting (Standard): This method presents the model with a
specific question or task (bare prompt) and requests a response
without additional context. While effective for simple queries, it
often falls short in complex reasoning tasks [1, 14]. For instance,
while a model might easily answer "What is the capital of France?",
solving equations typically requires careful regularization or model
selection. Our solution leverages a multi-faceted cognitive architec-
ture that scales with task complexity, providing more accurate and
contextually sensitive responses.

Chain of Thought (CoT) prompting [6, 15] enables LLMs to
formulate their own "thinking procedure" by eliciting intermediate
reasoning steps. This technique significantly improves performance
on complex reasoning tasks. However, CoT lacks a structured mech-
anism to handle diverse and evolving datasets systematically. Our
approach incorporates similar reflective processes within a cogni-
tive architecture, allowing the model to focus on minimal context
stored in Working Memory (WM) and avoid noise.

Reflection methods leverage the model’s ability to reconsider
and refine its previous responses, improving accuracy through it-
erative self-correction [10]. While effective, Reflection is limited
by its reliance on continuous feedback loops, which can be com-
putationally expensive. Our approach mitigates these limitations
by utilizing a structured Decision Procedure to balance quick as-
sessments with thorough analyses, thereby optimizing resource
utilization.

2.2 Agentic Behavior Techniques
ReAct [16] combines reasoning and action at every step, excelling
in dynamic, context-specific responses. However, it can rush to
solutions without sufficient analysis when deeper understanding is
required. In contrast, our approach embeds action-oriented strate-
gies within a structured cognitive framework. This allows for dy-
namic responses while also ensuring deeper, more systematic anal-
ysis when needed. By applying feature engineering principles, our
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approach refines and compiles monitoring data, delivering more
contextually relevant and actionable insights, balancing immediate
action with thorough analysis.

Self-Discovermethodology [17] enables LLMs to autonomously
generate reasoning structures, reducing dependency on pre-constructed
prompts. While effective for novel problems, it may struggle with
consistency across different contexts without a structured memory
system. Our approach enhances self-discovery by using structured
Semantic Memory (SM), allowing the LLM to leverage current data
like dataset descriptions to improve reasoning and maintain con-
textually relevant insights.

The Plan-and-Solve technique [13] prompts models to plan a
solution pathway before execution, improving zero-shot chain-of-
thought reasoning. However, its linear approach can be restrictive
for complex problem-solving. In contrast, our approach embeds
planning in the architecture. This allows for a more flexible and
dynamic approach, ensuring more efficient and accurate execution
of complex reasoning tasks.

More recently, PH-LLM [2], a fine-tuned variant of the Gemini
model for interpreting personal health data, highlights the effective-
ness of using domain-specific data to generate personalized insights.
However, PH-LLM relies on model fine-tuning, whereas our ap-
proach is fully LLM-agnostic. Rather than customizing specific
models, we employ structured memory and reasoning techniques
that work across any LLM, regardless of size or architecture.

In contrast to existing methods, our approach integrates struc-
tured memory, feature engineering, and adaptive decision-making.
This combination enables more efficient, accurate, and contextu-
ally relevant analysis of ML model performance, overcoming the
limitations of current approaches in handling complex, evolving
datasets in production environments.

3 APPROACH
While our architecture incorporates established memory compo-
nents, our key innovation lies in the decision-making process (Refac-
tor, Break Down, Compile) that applies feature engineering princi-
ples to enhance monitoring interpretability. CAMA operates pri-
marily on the outputs of monitoring tools (e.g., drift metrics, SHAP
values) rather than directly on raw datasets. The architecture inter-
prets these monitoring results to provide actionable recommenda-
tions, such as model retraining timing or data pipeline adjustments.
This design choice makes CAMA format-agnostic and applicable
across different monitoring scenarios and metrics, regardless of the
underlying data domains.

3.1 Memory Modules
Our architecture utilizes four distinct memory modules, each serv-
ing a specific role in the monitoring process:

Procedural Memory (MP ): Stores the agent code, including
prompts and chains, enabling effective utilization of the LLMwithin
the cognitive architecture. It encompasses both explicit procedural
knowledge encoded in the agent’s code and implicit knowledge
embedded in the LLM weights.

Episodic Memory (ME ): Retains specific past instances of
model monitoring, including test data 𝑋 𝑗

test and generated insights

𝐼 𝑗 . Formally represented as:

ME = (𝑋 𝑗
test, 𝐼

𝑗 )𝑛
𝑗=1 (1)

This memory is crucial for learning from historical data and en-
hancing decision-making based on past experiences.

Semantic Memory (MS ): Contains generalized knowledge
extracted from training data, the ML model, and monitoring tools.
Defined as:

MS = ( [𝑋train, 𝑦train],H ,T) (2)

where H represents the ML model and T represents the tools.
This memory supports contextual understanding and retrieval of
relevant information.

WorkingMemory (MW ): Holds the current context, including
test data, intermediate insights, and ongoing reasoning processes
(LLM steps). Formulated as:

MW = (ME ,MS, LLM steps) (3)

MW facilitates dynamic adaptation of responses based on real-time
analysis.

3.2 Decision Procedure
Our decision procedure is the core of the agent, it implements a
feature engineering-inspired approach through three key steps:
Refactor, Break Down, and Compile. This process enhances the
interpretability and actionability of monitoring insights. Algorithm
1 outlines the overall decision procedure.

Algorithm 1: Decision Procedure
Input: Procedural MemoryMP , Semantic MemoryMS ,
Episodic MemoryME , Test data 𝑋test;

Output: Monitoring Report or Deep Insight 𝐼deep;

Initialize Working Memory:
MW ←ME ,MS, LLM steps;

Refactor Step: begin
𝐼ref ← Refactor(𝑋test,MS,ME );

end

Break Down Step: begin
forall features 𝑓𝑖 ∈ 𝐼ref in parallel do

Generate prompt 𝑝𝑖 usingMP andMW ;
𝑟 𝑓𝑖 ← AnalyzeFeature(𝑓𝑖 , 𝑝𝑖 );

end
𝐼div ← 𝑟 𝑓𝑖 | 𝑓𝑖 ∈ 𝐼ref;

end

Compile Step: begin
𝐼deep ← CompileReport(𝐼div,MP );

end
Update Episodic Memory:ME ←ME ∪ (𝑋test, 𝐼deep);
return 𝐼deep;
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Refactor
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Automatic
feature refactoring 

Assemble
representation

Dataset info,
monitoring

logs

Include
context for 
each feature

       Dataset: Loan Default Prediction Data
├── Description: Likelihood of borrower default 
├── Features:
│   ├── Age (numerical, int, range: 18-70)
│   │   └── Tools: Drift report, SHAP values
│   ├── Income (numerical, float, range: $20k-$150k)
│   │   └── Tools: Drift report, SHAP values
│   └── ... 8 more features
└── Label: Loan Default (cat, int, 
                    values: {0: 'No default', 1: 'Default'})

No LLM 
calls

Figure 2: Refactor step gathers and structures information
from memories without LLM calls.

3.2.1 Decision Steps. The decision procedure consists of three key
steps that work together to provide comprehensive monitoring
analysis:

Refactor improves data representation by gathering information
from memories, performing automatic feature refactoring without
LLM calls, and assembling a structured representation with context
for each feature. The output is a well-organized dataset representa-
tion, as shown in Figure 2.

Break Down decomposes complex information for detailed
analysis. As illustrated in Figure 3, this step uses a dynamic system
prompt to guide parallel feature analysis, collecting detailed insights
and integrating tool results like drift reports and SHAP [8] values.

Compile integrates all insights into clear, interpretable outputs.
As shown in Figure 4, it generates an overview, gathers feature
reports, assembles a comprehensive report using LLM calls, and
saves it to Episodic Memory.

The resulting report provides a holistic view through summary,
key points, and detailed feature insights. By leveraging structured
memory, feature engineering principles, and adaptive learning,
we enhance the LLM’s ability to provide accurate, context-aware
insights. The LLM serves as a reasoning engine enabling multi-step
analysis, and our LLM-agnostic approach allows flexibility in model
selection, with even small models performing well at certain tasks.

3.3 Operational Characteristics
CAMA is designed to be flexible in its deployment and operation.
While primarily user-triggered, it can be integrated into automated
workflows through cron jobs or DevOps pipelines. The architec-
ture supports composability, allowing multiple CAMA agents to
be chained together in a multi-agent pipeline. For example, when
one agent detects significant drift, it can trigger another agent to
analyze the drift’s impact and suggest model improvements. This
multi-agent capability enables sophisticated monitoring workflows
where each agent specializes in different aspects of the monitoring
process.

Break down

Dynamic analysis

...

Parallel

Analyze 
Feature 1

Analyze 
Feature 2

Analyze 
Feature N

...

Dynamic
system
prompt

Collect reports

        Age: Feature Analysis Report
├── Description: Borrower age (18 to 70 years)
├── Type: numerical (int)
├── Possible Values: 18 to 70 years
└── Tool Results:
    ├── get_drift_report:
    │   ├── Drift Score: 0.0388 (No drift detected)
    │   └── Statistical Test: Kullback-Leibler (0.1)
    └── get_shap_values:
        ├── Reference SHAP: 0.0816 (position: 3)
        └── Current SHAP: 0.0535 (position: 5)

        Overall Analysis:
├── No significant drift detected in the Age feature.
└── SHAP value decreased, reducing feature
importance in predictions.

      Recommendations:
├── Monitor Age distribution.
├── Investigate decreased model contribution.

LLM 
calls

Figure 3: Break Down step analyzes features in parallel using
LLM calls.

Compile

Generate 
overview

Assemble 
final report

Gather
reports

Save to EM

               Summary Report

      Overview: Key points
      Detailed Insights:

    Label: [Deep analysis]  
    Age: [Deep analysis] 
    Income: [Deep analysis] 
    Credit Score: [Deep analysis] 
    Loan Amount: [Deep analysis]   
    Employment: [Deep analysis] 

LLM 
calls

Figure 4: Compile step generates the final comprehensive
report.

4 EXPERIMENTAL SETUP
4.1 Models and Datasets
4.1.1 LLM Models. We evaluated four LLMs to compare their rea-
soning capabilities for interpreting monitoring tool outputs:
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• Llama-3.2-1b: A 1 billion parameter model, representing
smaller, more resource-efficient LLMs.
• Llama3-8b: An 8 billion parameter model with an 8,192
token context window, representing medium-sized LLMs.
• Llama3-70b: A 70 billion parameter model with an 8,192
token context window, representing large-scale LLMs.
• GPT-4o-mini: A multimodal model with a larger context
window, representing state-of-the-art performance. The ex-
act model size has not been published.

All models were used with a temperature setting of 0 to ensure
consistency in responses. This range of models allows us to evalu-
ate the performance of our approach across different model sizes
and architectures, from resource-efficient options to state-of-the-
art performers. The inclusion of Llama-3.2-1b enables us to assess
the effectiveness of our approach on smaller models, which are
often preferred in resource-constrained environments. The compar-
ison across these models provides insights into how our cognitive
architecture scales with different LLM capabilities and sizes.

4.1.2 Datasets. We curated three datasets representing diverse
domains and drift scenarios, each with varying levels of complex-
ity. These datasets were synthetically generated using GPT-4o and
subsequently refined to ensure realism and consistency. The re-
finement process addressed potential issues such as nonsensical
drifts, ensured correct value ranges (e.g., for age), and maintained
appropriate type interdependencies and distributions. Detailed in-
formation about the dataset generation and refinement process is
available in the supplementary file. The datasets are as follows:
Loan Default Prediction (Easy): A financial dataset with 10 fea-
tures (7 numerical, 3 categorical). This dataset is considered easy due
to its straightforward feature set and clear relationships between
variables such as income, credit score, and loan default probability.
Features include Age (18-70), Income ($20K-$150K), Credit Score
(300-850), Loan Amount ($1K-$50K), and categorical variables like
Home Ownership (Rent/Own/Mortgage).
Eligibility Simulation (Medium): A dataset with 5 features (2
numerical, 3 categorical). It is classified as medium difficulty due to
the interplay between socioeconomic factors and eligibility criteria,
requiring more nuanced interpretation. The numerical features are
designed with realistic ranges based on socioeconomic indicators.
Chronic Condition Prediction (Difficult): A healthcare dataset
with 10 features (6 numerical, 4 categorical). This dataset is con-
sidered difficult due to the complex interactions between various
health indicators, lifestyle factors, and socioeconomic variables in
predicting chronic conditions. Numerical features include health
metrics and lifestyle indicators with clinically relevant ranges.

Each dataset was designed to exhibit realistic distribution drifts,
challenging the monitoring capabilities of our system and base-
lines across different complexity levels. It is important to note that
while the original datasets contain 1,000 samples each, our monitor-
ing tools utilize only 100 samples for drift calculation and feature
attribution. This approach ensures that the sample size does not
significantly impact the monitoring process, allowing for efficient
analysis regardless of the original dataset size.

4.2 Evaluation Methodology
Our evaluation follows the MMLU (Measuring Massive Multitask
Language Understanding) approach [5], using four key metrics and
a structured evaluation process:

(1) Accuracy (↑): Percentage of correct answers to multi-choice
questions, measuring report quality.

(2) Unknown Ratio (↓): Percentage of "I DON’T KNOW" re-
sponses, indicating information gaps.

(3) Tokens (↓): Number of tokens generated, measuring con-
ciseness and efficiency.

(4) Time (↓): Elapsed time for report generation, affected by
model latency.

All metrics are reported with mean and standard deviation across
multiple runs.

The evaluation consists of five steps:
(1) Ground Truth Creation: Comprehensive reports using raw

data and monitoring tools, including executive summaries,
dataset synopses, and detailed analyses.

(2) QuestionGeneration: 39multi-choice questions per dataset
created by GPT-4o, covering various aspects of the reports.

(3) Report Generation: Reports generated using CAMA and
baseline methods across all LLM models.

(4) Evaluation: GPT-4o as impartial judge answers pre-defined
questions for each report.

(5) MetricCalculation: Comparison of GPT-4o’s answers against
ground truth for accuracy and unknown ratio, plus token
and time measurements.

This systematic approach ensures fair comparison across meth-
ods and models, with robust and consistent performance assess-
ment.

4.3 Comparison Methods
We compared CAMA against six alternative methods:
• Standard (I/O): Direct input-output prompting.
• Chain of Thought (CoT): Prompting with intermediate rea-
soning steps.
• Reflection: Iterative self-correction approach.
• ReAct: Reasoning and acting framework.
• Self-Discover: Autonomous reasoning structure generation.
• Plan & Execute: Structured planning and execution approach.

4.4 Implementation Details
Our implementation executed LLM models across two distinct ex-
perimental setups:
• Large LanguageModels API: We integrated GROQ2, Open-
Router3, and OpenAI APIs to access large-scale language
model inference capabilities.
• Small Language Models API: To access inference capabil-
ities of CPU-optimized smaller language models, we lever-
aged the Intel® Optimized Stack on a Lenovo cluster with
dual Intel® Xeon® Platinum 8360Y processors @ 2.40GHz
and 256 GB RAM, running Ubuntu 22.04 LTS. This setup
utilized the Intel® AI Analytics Toolkit (via Docker image

2https://groq.com/
3https://openrouter.ai/
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Figure 5: Accuracy comparison for the Healthcare dataset
across different models and methods.

intel/oneapi-aikit:devel-ubuntu22.044) and Intel® Extension
for PyTorch5 1.12.100+cpu.

We also leveraged other key technologies and libraries:
• Cognitive Architecture: Implemented using Langchain6
and Langgraph7 for flexible and efficient workflow manage-
ment.
• Data Representation: Docarray8 was employed for han-
dling unstructured data representations.
• Monitoring Tools: We utilized Alibi Detect9 for calculating
drift scores and feature attributions.

All methods were implemented using Python 3.9, ensuring consis-
tency in environment and dependencies for fair comparisons

4.5 Reproducibility
To facilitate reproducibility, we have released our codebase10, in-
cluding dataset generation scripts, model implementations, evalua-
tion pipelines, and configuration files for all experiments.

5 RESULTS AND DISCUSSION
Our proposed method, CAMA, demonstrates superior performance
across all evaluated scenarios, as shown in Table 1 and Figures
5, 6, and 7. These results provide a comprehensive comparison of
our approach against other established methods across different
datasets and model sizes.

5.1 Performance Analysis
CAMA consistently outperforms all other methods across different
model sizes and datasets:

4https://hub.docker.com/r/intel/oneapi-aikit
5https://github.com/intel/intel-extension-for-pytorch
6https://www.langchain.com/
7https://langchain-ai.github.io/langgraph/
8https://docs.docarray.org/
9https://github.com/SeldonIO/alibi-detect
10https://github.com/gusseppe/cognitive_architecture_checker/
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Figure 6: Accuracy comparison for the Eligibility dataset
across different models and methods.
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Figure 7: Accuracy comparison for the Financial dataset
across different models and methods.

• Accuracy: CAMA achieves the highest accuracy for all mod-
els, with particularly impressive results for larger models.
For llama3-70b, CAMA reaches 92.3% ± 1.5% accuracy, sig-
nificantly outperforming the next best method (CoT and
Reflection, both at 59.0% ± 9.0%).
• Unknown Ratio: Our method maintains the lowest un-
known ratios, reaching 0.0% for both llama3-70b and gpt-4o-
mini, indicating comprehensive and informative reports.
• Tokens and Time: While CAMA generally generates more
tokens compared to simpler methods, the trade-off in perfor-
mance is substantial. The increased token count is justified
by the significant gains in accuracy and reduction in un-
known responses.

The radar plots (Figures 5, 6, and 7) demonstrate CAMA’s supe-
rior performance across all datasets and model sizes. In each plot,
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Table 1: Average Performance Comparison Across All Datasets

Model Metric CAMA Standard CoT Reflection React S.Discover P.Execute

llama-3.2-1b

Accuracy (↑) 55.6 ± 8.1 23.1 ± 12.6 13.7 ± 4.8 24.8 ± 6.0 27.4 ± 17.2 21.4 ± 11.5 19.7 ± 9.9
Unknown (↓) 35.9 ± 5.4 76.9 ± 12.6 85.5 ± 4.5 70.1 ± 8.9 69.2 ± 19.4 77.8 ± 12.3 80.3 ± 9.9
Tokens (↓) 24.9 ± 5.2 4.9 ± 0.2 3.8 ± 0.8 14.2 ± 0.5 23.6 ± 9.6 17.3 ± 0.7 23.7 ± 7.0
Time (↓) 5.6 ± 0.3 1.5 ± 0.6 2.0 ± 0.4 19.7 ± 16.2 35.2 ± 23.5 61.0 ± 27.7 46.6 ± 2.2

llama3-8b

Accuracy (↑) 90.6 ± 2.3 28.2 ± 6.8 19.7 ± 11.1 28.2 ± 11.8 9.4 ± 3.1 22.2 ± 12.8 46.1 ± 15.0
Unknown (↓) 0.9 ± 0.9 70.1 ± 8.2 80.3 ± 11.1 68.4 ± 12.8 89.8 ± 3.9 76.1 ± 13.4 47.9 ± 16.6
Tokens (↓) 19.8 ± 4.1 5.0 ± 0.1 4.8 ± 0.2 10.0 ± 3.3 5.7 ± 1.3 20.2 ± 3.2 34.9 ± 3.7
Time (↓) 5.2 ± 0.3 1.1 ± 0.1 3.6 ± 2.6 11.7 ± 7.8 6.6 ± 4.2 22.7 ± 11.1 38.3 ± 12.0

llama3-70b

Accuracy (↑) 92.3 ± 1.5 49.6 ± 17.5 59.0 ± 9.0 59.0 ± 9.0 12.8 ± 4.4 28.2 ± 8.2 45.3 ± 6.0
Unknown (↓) 0.0 ± 0.0 42.7 ± 21.4 35.9 ± 12.8 32.5 ± 12.6 85.5 ± 3.1 66.7 ± 8.3 50.4 ± 7.6
Tokens (↓) 19.1 ± 2.2 4.0 ± 0.9 4.3 ± 1.0 12.3 ± 1.7 7.1 ± 1.5 19.5 ± 3.4 37.3 ± 25.8
Time (↓) 72.2 ± 11.7 12.5 ± 5.2 35.3 ± 6.5 122.2 ± 13.3 21.2 ± 2.2 123.6 ± 29.9 249.0 ± 128.9

gpt-4o-mini

Accuracy (↑) 90.6 ± 3.1 68.4 ± 6.7 74.3 ± 6.8 16.3 ± 7.3 21.4 ± 14.0 42.7 ± 20.7 42.7 ± 19.2
Unknown (↓) 0.0 ± 0.0 29.1 ± 6.0 19.7 ± 9.5 82.9 ± 8.1 75.2 ± 15.2 56.4 ± 20.0 51.3 ± 16.0
Tokens (↓) 20.2 ± 4.0 4.8 ± 0.8 4.5 ± 1.1 13.6 ± 2.3 7.8 ± 1.7 22.6 ± 1.8 495.9 ± 10.8
Time (↓) 27.2 ± 5.5 19.1 ± 3.6 23.9 ± 2.9 57.0 ± 2.9 25.9 ± 3.4 101.1 ± 37.0 340.3 ± 64.1

CAMA’s accuracy (represented by the blue area) consistently ex-
tends further from the center than other methods, indicating higher
accuracy across all scenarios.

5.2 Comparative Analysis
CAMA’s performance contrasts sharply with other approaches:

• Standard (I/O): Shows moderate accuracy but high un-
known ratios, particularly for smaller models.
• Chain of Thought (CoT): Performs well with larger models
but struggles with smaller ones, suggesting its effectiveness
depends on model size.
• Reflection: Shows inconsistent performance across model
sizes and datasets.
• ReAct: Performs poorly across all model sizes, indicating
potential issues with its reasoning and action framework in
this context.
• Self Discover: Demonstrates low accuracy and high un-
known ratios, suggesting difficulties in autonomous reason-
ing structure generation for this task.
• Plan & Execute: Shows moderate performance with some
models but struggles with consistency across datasets and
model sizes.

These results reveal that while somemethods (like CoT) work better
with larger models, CAMA consistently outperforms all methods
across model sizes and datasets. This suggests that our cognitive
architecture effectively leverages the strengths of various models
while providing additional structure and guidance.

5.3 Model Size Impact
The impact of model size on performance is evident:

• llama-3.2-1b: Evenwith this smallermodel, CAMAachieves
55.6% ± 8.1% accuracy, significantly outperforming other
methods.
• llama3-8b: CAMA’s performance jumps to 90.6% ± 2.3%
accuracy, demonstrating substantial improvement with in-
creased model size.
• llama3-70b and gpt-4o-mini: These larger models show
CAMA’s peak performance, with accuracies of 92.3% ± 1.5%
and 90.6% ± 3.1% respectively.

This trend suggests that while CAMA benefits from larger mod-
els, it can still provide significant improvements even with smaller,
more resource-efficient models.

5.4 Dataset-specific Performance
Figures 5, 6, and 7 illustrate CAMA’s consistent superior perfor-
mance across different datasets:
• Healthcare: CAMA shows a clear advantage, particularly
with llama3-8b and llama3-70b models.
• Eligibility: The performance gap is most pronounced in
this dataset, with CAMA significantly outperforming other
methods across all model sizes.
• Financial: While the performance gap narrows for some
models (particularly gpt-4o-mini), CAMA still maintains a
clear lead.

These dataset-specific results demonstrate CAMA’s versatility and
robustness across different domains and data complexities.

5.5 Ablation Study
To evaluate the importance of each component in our proposed
architecture, we conducted an ablation study using the financial
dataset and the llama3-8b model. Table 2 presents the results.

The ablation study reveals several crucial insights:
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Table 2: Ablation Study on financial dataset using llama3-8b

Configuration Accuracy (%)

Full Pipeline 88.30

w/o Refactor 20.51
w/o Break Down 23.08
w/o Compile 69.23

• Component Interdependence: Removing any single com-
ponent results in a significant performance decrease, with
accuracy dropping by at least 19 percentage points (in the
case of removing Compile). This demonstrates the interde-
pendence of all components in our pipeline.
• Critical Components: The Refactor and Break Down com-
ponents appear most critical, with their removal causing
accuracy drops more than 67.8 and 65.2 percentage points,
respectively. Refactor’s importance stems from its context-
aware filtering that provides essential feature representa-
tions, while Break Down enables focused analysis of individ-
ual features, reducing cognitive load on LLMs. This aligns
with our design philosophy of improving data representation
and detailed analysis before synthesis.
• Compile Importance:While less impactful than Refactor
and Break Down, the Compile step still contributes signif-
icantly to the overall performance, improving accuracy by
19.07 percentage points.
• Pipeline Robustness: The substantial accuracy drop when
removing any component indicates that each step is crucial
for optimal performance. This justifies the complexity of our
full pipeline and highlights the importance of maintaining
all components for best results.

5.6 Discussion
The superior performance of CAMA across different model sizes
and metrics underscores the effectiveness of our adaptive cognitive
architecture. Several factors contribute to these outcomes:

(1) Effective use of memory modules: Our method’s struc-
tured use of Procedural, Episodic, Semantic, and Working
Memory ensures efficient retention and utilization of rele-
vant information throughout the analysis process.

(2) Feature engineering-inspired approach: The Refactor,
Break Down, and Compile steps allow our method to handle
complex scenarios and evolving data effectively, as evidenced
by the significant performance drops when any of these
components are removed.

(3) Adaptability across model sizes: CAMA’s consistent per-
formance improvements across different model sizes (from
llama-3.2-1b to llama3-70b) demonstrate its ability to effec-
tively leverage the strengths of various LLMswhile providing
additional guidance and structure.

(4) Performance-token trade-off:While CAMA’s approach
consumes more tokens due to feature-specific context preser-
vation and independent reasoning chains, this design choice

is justified by the significant performance gains across all
metrics.

The ablation study further confirms the importance of each com-
ponent in our pipeline, demonstrating that the full architecture is
necessary to achieve optimal performance.

6 CONCLUSION
We presented CAMA, an adaptive cognitive architecture for moni-
toring ML models using LLMs. Leveraging multiple memory types,
our method automates monitoring and reporting, providing ac-
curate and actionable insights. Experimental results demonstrate
CAMA’s superior performance across various metrics, model sizes,
and datasets. With llama3-70b, CAMA achieved 92.3% ± 1.5% accu-
racy, outperforming the next best method by 33.3 percentage points.
For llama3-8b, CAMA’s accuracy (90.6% ± 2.3%) surpassed the next
best method by 44.5 percentage points. Even with llama-3.2-1b,
CAMA showed robust performance (55.6% ± 8.1% accuracy). The
three-step process of Refactor, Break Down, and Compile enables
efficient evaluations, adapting to diverse data drift scenarios. Our
ablation study highlights the necessity of each component in our
pipeline. CAMA’s consistent superior performance across Health-
care, Eligibility, and Financial datasets demonstrates its versatility
and adaptability. This, combined with its effectiveness across vari-
ous model sizes, positions CAMA as a powerful tool for enhancing
ML model monitoring in production environments, contributing to
more reliable and transparent AI systems.

7 LIMITATIONS AND FUTUREWORK
While CAMA demonstrates significant improvements in ML model
monitoring, our current study has some limitations. The evalua-
tion was conducted on a specific set of datasets and LLM archi-
tectures, which may limit the generalizability of our findings. Ad-
ditionally, the computational requirements and processing times
of our method in comparison to simpler approaches warrant fur-
ther investigation. Future research should focus on expanding the
evaluation of CAMA across a broader range of LLM architectures,
monitoring scenarios, and domains to establish wider applicabil-
ity. Investigating techniques to optimize the implementation for
reduced computational overhead and processing time could en-
hance CAMA’s efficiency. These advancements would contribute
to making CAMA more robust and adaptable for diverse real-world
ML monitoring scenarios, ultimately leading to more reliable ML
systems.
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