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ABSTRACT

We consider a stylized formal model of public transportation, where

a set of agents need to travel along a given road, and there is a bus

that runs the length of this road. Each agent has a left terminal and

a right terminal between which they wish to travel; they can walk

all the way, or walk to/from the nearest stop and use the bus for

the rest of their journey. The bus can make a fixed number of stops,

and the planner needs to select locations for these stops. We study

notions of efficiency and fairness for this setting. First, we give a

polynomial-time algorithm for computing a solution that minimizes

the total travel time; our approach can capture further extensions

of the base model, such as more general cost functions or existing

infrastructure. Second, we develop a polynomial-time algorithm

that outputs solutions with provable fairness guarantees (such as

a variant of the justified representation axiom or 2-approximate

core). Our simulations indicate that our algorithm almost always

outputs fair solutions, even for parameter regimes that do not admit

theoretical guarantees.
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1 INTRODUCTION

The use of private vehicles is one of the most significant contrib-

utors to pollution. For instance, it is responsible for 43% of the

greenhouse gas emissions in the European Union [17]. Therefore,

providing well-functioning public transport has repeatedly been

identified as a key factor in fighting climate change [9, 25, 39].

The need to model and solve problems related to public transport

has been under scrutiny from an operations research perspective;

see, e.g., [15] for an extensive literature survey. In the optimization

literature, the implementation of public transport infrastructure

is commonly seen as a two-stage process consisting of a planning

phase and an operational phase. The planning phase is concerned

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,

USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

with the design of the transportation network as well as with deter-

mining optimal operation frequencies [27, 38]. In the operational

phase, the cost of operating public transport should be minimized,

e.g., by optimally assigning vehicles to routes or drivers to buses

[14, 40]. In both phases, the primary metric used to evaluate the

solution quality is the social welfare, i.e., the total/average travel

time.

While optimizing the social welfare is a natural and intuitively

appealing goal, we believe that it is equally important to approach

the design of transportation networks from a fairness perspective.

That is, the proposed route networks, frequencies and types of

vehicles should benefit not just the majority of the population, but

also smaller and less powerful groups, providing usable connections

between all neighborhoods and serving the needs of all residents.

We propose to tackle this challenge using the conceptual appa-

ratus of group fairness, building on the ideas of justified represen-

tation in multi-winner voting [3] and core stability in cooperative

game theory [21]. The intuition that we aim to capture is that suffi-

ciently large groups of agents with similar preferences deserve to

be represented in the selected solution, or, more ambitiously, that

each group should be allocated resources in proportion to its size.

While we believe that this perspective should be taken into ac-

count at all stages of transportation planning, we showcase our

approach by applying it to a specific and relatively simple task:

choosing the locations of the stops for a fixed bus/train route. Specif-

ically, we consider the setting where the trajectory of the vehicle

has been exogenously determined, either by topography (e.g., a

mountain road or a river) or by existing infrastructure (e.g., train

tracks), the number of stops has been fixed in advance due to bounds

on the overall travel time, but the designer still has the freedom to

decide where to place the stops. Then, to use the public transport

option, the user would have to travel to a nearby stop by using

private transport (such as walking, cycling, or using an e-scooter),

ride the vehicle towards their destination, and then use private

transport again for the last-mile travel. Alternatively, they can opt

to use private transport for the entire trip; however, we assume that

private transport has higher per-mile cost (measured as physical

effort, travel time, or monetary cost) than public transport. Cru-

cially, the agents’ decision whether to use the public transport at all

is influenced by the location of the stops, so the planner’s choices

made at this stage may have a dramatic effect on the demand for

public transport: positioning the stops without taking into account

the agents’ travel needs may render the system unusable and push

the residents towards private transportation solutions.

For readability, when describing the model, we talk about a bus

and the agents walking to/from bus stops; however, we emphasise

that our model is applicable to inter-urban transportation, such
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as train routes and long-distance buses (in which case the agents’

last-mile transportation solutions may involve cycling or riding a

scooter rather than walking).

1.1 Our Contribution

We put forward a stylized model where there is a bus route that

travels the length of a given road, and there are 𝑛 agents who may

ride this bus. Each agent wants to travel between two terminal

points located along this road; they can walk all the way, or take

the bus (in which case they still need to walk to/from suitable stops).

The planner has a budget to build a limited number of bus stops

and is given a set of possible stop locations; they then decide which

stops should be built. A solution, i.e., a set of bus stop locations, is

evaluated according to two criteria. First, we measure it in terms of

efficiency, defined by the total time the agents spend on traveling

between their terminals. Second, we investigate to what extent a

solution offers proportional representation to agent groups. We

assume that each of the 𝑛 agents is entitled to the 1/𝑛 fraction of

the available budget. We then want to achieve outcomes that are

group-fair, in the sense that there is no set of agents 𝑆 such that all

agents in 𝑆 can withdraw their shares of the budget and then pool

them to build a pair (resp., a set) of stops such that all agents in 𝑆

prefer the outcome where only these stops are built to the current

outcome; we say that solutions with this property provide justified

representation (resp., lie in the core).

Our first contribution is a dynamic program that can efficiently

compute cost-minimal solutions. This approach is very flexible in

that it still works when we add further features to the model, such

as travel costs dependent on non-homogeneous road conditions or

existing infrastructure. Moreover, while computing the minimum

total cost becomesNP-complete when bus stops have variable costs,

our dynamic program still runs in pseudo-polynomial time with

respect to the budget.

In the second part of the paper, we focus on finding solutions that

provide justified representation (JR) or are (approximately) in the

core. Unfortunately, efficiency and justified representation turn out

to be incompatible. However, we present a polynomial-time algo-

rithm that operates by selecting bus stops at distances proportional

to the density of terminal points, and show that this algorithm finds

JR solutions whenever the cost of taking the bus is zero. Moreover,

this algorithm offers a 2-approximation to the stronger fairness

concept of the core, and exhibits excellent empirical performance

(on synthetic data). In contrast, there are instances for which no

solution can provide a stronger form of JR.

1.2 Related Work

Fairness considerations have a long-standing history in collective

decision-making [see, e.g., 35, 36]. In the context of transportation,

fairness is often concerned with justice in terms of equity. It is then

measured in terms of, e.g., availability to monetarily disadvantaged

population [34], distribution of the impact on health caused by

pollution [19], or general access to key infrastructure [31].

Fairness in transportation has been studied in the operations

research literature, but the existing work is limited to the opera-

tional phase of transportation. For instance, Jozefowiez et al. [23]

aim at fairly levelling road occupation to avoid congestion, while

Matl et al. [29] are concerned with balancing the workload among

a fleet of vehicles that have to jointly cover a given set of trips.

In contrast, our approach, i.e., modeling fairness in terms of pro-

portionality, is rooted in the (computational) social choice literature

[see e.g., 13, 22, 32]. Our model can be viewed as a special case of

multi-winner voting, and our notion of justified representation is

an adaptation of a similar concept in multi-winner approval vot-

ing [3]. It is also similar to the notion of proportional fairness in fair

clustering [12, 30]. In this stream of literature, Li et al. [28] study

approximate core stability, where the approximation is with respect

to the size of the deviating coalition (which is similar in spirit to

our approach) or with respect to the gain by the deviating agents.

Kalayci et al. [24] consider a similar approximation in the context

of multi-winner voting, and Chaudhury et al. [10] explore similar

ideas in federated learning settings.

We note that placing stops on the line is similar in spirit to

facility location [7]; however, our focus in this work is on fairness,

whereas much of the facility location literature takes a mechanism

design perspective (see, however, [16, 41]). Most related to our

paper are models which investigate the same cost function [8, 20].

In particular, themodel by Chan andWang [8] is a special case of our

model where 𝛼 = 0 (i.e., taking the bus has no cost), all agents have

the same destination, and only two bus stops are built. However,

our work differs in two key aspects: we allow for more than two

stops to be built and study fairness aspects (rather than strategic

manipulation). The facility location literature also considers agents

that are interested in more than one location [2, 37], but these works

use different cost functions.

2 MODEL

Given a positive integer 𝑘 ∈ N, we write [𝑘] := {1, . . . , 𝑘}. For
two numbers 𝑥,𝑦 ∈ Q, we denote by 𝑑 (𝑥,𝑦) := |𝑥 − 𝑦 | the Eu-

clidean distance from 𝑥 to 𝑦. We extend this notation to sets:

given a number 𝑥 ∈ Q and a set of numbers 𝑃 ⊆ Q, we write

𝑑 (𝑥, 𝑃) := min𝑦∈𝑃 𝑑 (𝑥,𝑦).
For 𝛼 ∈ [0, 1], an instance I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ of the 𝛼-bus

stop problem (𝛼-BSP) is given by a finite set 𝑁 of 𝑛 agents, a finite

set 𝑉 ⊆ Q of𝑚 potential bus stops, a budget 𝑏 ∈ N, and, for each
agent 𝑖 ∈ 𝑁 , their type 𝜃𝑖 = (ℓ𝑖 , 𝑟𝑖 ), where ℓ𝑖 , 𝑟𝑖 ∈ 𝑉 and ℓ𝑖 < 𝑟𝑖 . We

refer to the points ℓ𝑖 and 𝑟𝑖 as the terminal points of 𝑖 . We denote the

set of all terminal points of instance I by A(I) := {ℓ𝑖 , 𝑟𝑖 : 𝑖 ∈ 𝑁 }.
A solution to an instance of 𝛼-BSP is a set of bus stops 𝑆 ⊆ 𝑉 . A

solution 𝑆 is said to be feasible if |𝑆 | ≤ 𝑏, i.e., the number of selected

bus stops does not exceed the budget.

Our cost function extends models of facility locations in which

two stops are build [8, 20]. For each agent 𝑖 ∈ 𝑁 , their cost of

traveling between two points ℓ, 𝑟 ∈ Q is 𝑑 (ℓ, 𝑟 ) if they walk and

𝛼 · 𝑑 (ℓ, 𝑟 ) if they take the bus. Consequently, the cost of agent 𝑖 for

a solution 𝑆 to an instance I is given by

𝑐I𝑖 (𝑆) := min

{
𝑑 (ℓ𝑖 , 𝑟𝑖 )
min𝑥,𝑦∈𝑆 [𝑑 (ℓ𝑖 , 𝑥) + 𝛼 · 𝑑 (𝑥,𝑦) + 𝑑 (𝑟𝑖 , 𝑦)] .

(1)

This expression considers two possibilities for 𝑖: (1) walking all the

way from ℓ𝑖 to 𝑟𝑖 , or (2) walking from ℓ𝑖 to a bus stop 𝑥 , taking the

bus to another stop 𝑦, and then walking from 𝑦 to 𝑟𝑖 , where 𝑥 and 𝑦

are chosen to minimize the overall travel cost.
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Figure 1: Illustration of Example 2.4. The same instance proves the incompatibility of efficiency and JR in Proposition 2.5.

The total cost of a solution 𝑆 ⊆ 𝑉 for an instance I is defined

as 𝑐I (𝑆) := ∑
𝑖∈𝑁 𝑐I

𝑖
(𝑆). Whenever the instance I is clear from

the context, we omit the superscript I. A solution is efficient if it

minimizes the total cost among feasible solutions.

Apart from efficiency, we are also interested in fairness. Our first

concept of fairness builds on ideas from the multi-winner voting

and fair clustering literature [3, 4, 12, 28, 30]. Suppose we are given

an instance with 𝑛 agents and budget 𝑏. Then, intuitively, each

agent is entitled to
𝑏
𝑛 units of money, so a group of ⌈𝑛

𝑏
⌉ agents

should be able to dictate the position of one stop. Therefore, one

may want to rule out solutions 𝑆 such that all agents in a group of

size at least
𝑛
𝑏
can lower their costs by abandoning 𝑆 and building

a single stop. However, this condition is too weak, as no agent

benefits from a single stop. Hence, we strengthen it by considering

groups of agents that are entitled to two stops.

Definition 2.1. A solution 𝑆 ⊆ 𝑉 is said to provide justified rep-

resentation (JR) if for every set of agents 𝑀 ⊆ 𝑁 with |𝑀 | ≥ 2𝑛
𝑏

and every pair of stops 𝑇 ⊆ 𝑉 there exists an agent 𝑖 ∈ 𝑀 such

that 𝑐𝑖 (𝑇 ) ≥ 𝑐𝑖 (𝑆). Moreover, a solution 𝑆 ⊆ 𝑉 is said to provide

strong justified representation if for every set of agents𝑀 ⊆ 𝑁 with

|𝑀 | ≥ 2𝑛
𝑏

and every pair of stops 𝑇 ⊆ 𝑉 there exists an agent

𝑖 ∈ 𝑀 such that 𝑐𝑖 (𝑇 ) > 𝑐𝑖 (𝑆) or for all agents 𝑖 ∈ 𝑀 it holds that

𝑐𝑖 (𝑇 ) ≥ 𝑐𝑖 (𝑆).
The key distinction between JR and strong JR is that, to define

the former, we only consider deviations to pairs of stops that are

strictly preferred by each agent in𝑀 , whereas to define the latter,

we also consider deviations that make no agent in 𝑀 worse off

while making at least one member of𝑀 strictly better off. Thus, an

outcome that provides strong JR also provides JR, but the converse

is not necessarily true.

Justified representation can also be viewed as a notion of stability:

a group of at least
2𝑛
𝑏

agents can deviate by building two stops,

and we require that there is no group such that all group members

can benefit from a deviation. Note that a budget of 2 is exactly the

proportion of the budget that a group of size

⌈
2𝑛
𝑏

⌉
is entitled to

spend. By generalizing this idea to groups of arbitrary size, where a

deviating group is allowed to spend a fraction of the budget that is

proportional to the group size, we arrive to the concept of the core.

We note that the core has been considered as a notion of fairness

in a variety of contexts, ranging from participatory budgeting to

clustering [1, 5, 10, 11, 18].

Definition 2.2. A subset of agents 𝑀 ⊆ 𝑁 is said to block a

solution 𝑆 ⊆ 𝑉 if there exists a subset of stops 𝑇 ⊆ 𝑉 such that

|𝑇 | ≤ |𝑀 | · 𝑏𝑛 and 𝑐𝑖 (𝑇 ) < 𝑐𝑖 (𝑆) for all agents 𝑖 ∈ 𝑀 . Moreover, a

subset of agents 𝑀 ⊆ 𝑁 is said to weakly block a solution 𝑆 ⊆ 𝑉

if there exists a subset of stops 𝑇 ⊆ 𝑉 such that |𝑇 | ≤ |𝑀 | · 𝑏𝑛 ,

𝑐𝑖 (𝑇 ) ≤ 𝑐𝑖 (𝑆) for all agents 𝑖 ∈ 𝑀 , and there exists 𝑗 ∈ 𝑀 with

𝑐 𝑗 (𝑇 ) < 𝑐 𝑗 (𝑆). A solution is said to be in the strong core if it is not

weakly blocked.

Equivalently, a solution 𝑆 ⊆ 𝑉 is in the core if, for every set of

agents 𝑀 ⊆ 𝑁 and every set of stops 𝑇 ⊆ 𝑉 with |𝑇 | ≤ |𝑀 | · 𝑏𝑛 ,
there exists an agent 𝑖 ∈ 𝑀 such that 𝑐𝑖 (𝑇 ) ≥ 𝑐𝑖 (𝑆). The core is a
demanding solution concept. Therefore, we also define a multiplica-

tive approximation of the core (which we call the 𝛽-core), where,

for a group of agents to be allowed to deviate by building 𝑡 stops,

the size of the group should be at least 𝛽 times the number of agents

who ‘deserve’ 𝑡 stops. Note that the 1-core is identical to the core.

Definition 2.3. Let 𝛽 ≥ 1. A solution 𝑆 ⊆ 𝑉 is said to be in the

𝛽-core if, for every set of agents 𝑀 ⊆ 𝑁 and every set of stops

𝑇 ⊆ 𝑉 with 𝛽 · |𝑇 | ≤ |𝑀 | · 𝑏𝑛 , there exists an agent 𝑖 ∈ 𝑀 such that

𝑐𝑖 (𝑇 ) ≥ 𝑐𝑖 (𝑆).

We provide an example to illustrate our model.

Example 2.4. Let 𝛼 ∈ [0, 1). Consider the instance

⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩, depicted in Figure 1, with 𝑁 = {𝑎𝑖 : 𝑖 ∈ [6]},
𝑉 = {0, 1, 4, 7, 10, 13, 15}, and 𝑏 = 6 = |𝑁 |. The agents’ types are as
follows: 𝜃𝑎1 = 𝜃𝑎2 = (0, 15), 𝜃𝑎3 = (1, 4), 𝜃𝑎4 = (1, 7), 𝜃𝑎5 = (1, 10),
and 𝜃𝑎6 = (1, 13).

Consider the solution 𝑆∗ = {1, 4, 7, 10, 13, 15}. It holds that

𝑐 (𝑆∗) = 60𝛼 + 2(1 − 𝛼). However, 𝑆∗ does not provide JR. To see

this, consider 𝑀 = {𝑎1, 𝑎2} and 𝑇 = {0, 15}. Then, |𝑀 | = 2𝑛
𝑏

and

𝑐𝑎 (𝑇 ) < 𝑐𝑎 (𝑆∗) for each 𝑎 ∈ 𝑀 .

In contrast, any solution 𝑆 ′ = 𝑉 \ {𝑥} for 𝑥 ∈ {4, 7, 10, 13}
provides JR because then 𝑆 ′ contains the terminals of all except

possibly one agent, who is only entitled to one stop. ◁

We can use Example 2.4 to prove that providing JR is incompati-

ble with minimizing total cost, apart from the trivial case of 𝛼 = 1

where walking and taking the bus takes the same time.

Proposition 2.5. For each 𝛼 ∈ [0, 1) there exists an instance of

𝛼-BSP such that no feasible solution can both minimize the total cost

and provide JR.

Proof. Consider the instance in Example 2.4 and the solution

𝑆∗ = {1, 4, 7, 10, 13, 15}. We already know that 𝑆∗ does not provide
JR. To complete the proof, we show that 𝑆∗ is the unique solution
of minimum cost. Recall that 𝑐 (𝑆∗) = 60𝛼 + 2(1 − 𝛼).

First, note that the sum of lengths of the agents’ routes is 2 · 15 +
3 + 6 + 9 + 12 = 60. Hence, the cost of every solution is at least 60𝛼 .

We now show that every other solution costs more than 𝑆∗. Fix a
solution 𝑆 ⊆ 𝑉 with |𝑆 | = 6. If 1 ∉ 𝑆 , then the walking cost of each

of the agents in {𝑎3, 𝑎4, 𝑎5, 𝑎6} is at least 1, so 𝑐 (𝑆) ≥ 60𝛼 + 4(1−𝛼).
Therefore, we may assume that 1 ∈ 𝑆 . Moreover, if 15 ∉ 𝑆 , then the
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walking costs of 𝑎1 and 𝑎2 are at least 2, so the solution is worse

than 𝑆∗. Hence, we may also assume that 15 ∈ 𝑆 .
Next, assume that 0 ∈ 𝑆 and hence {0, 1, 15} ⊆ 𝑆 . There-

fore, we only have 3 stops to cover the right terminals of agents

{𝑎3, 𝑎4, 𝑎5, 𝑎6}. One of these agents has to walk a distance of at least
3, unless 𝑆 = {0, 1, 4, 7, 10, 15}. In the latter case, 𝑎6 has to stay on

the bus for 2 units of distance past their right terminal and then

walk back. Hence, 0 ∈ 𝑆 implies 𝑐 (𝑆) ≥ min{60𝛼 + 3(1 − 𝛼), 62𝛼 +
2(1 − 𝛼)} > 𝑐 (𝑆∗). Thus, we conclude that 0 ∉ 𝑆 and therefore

𝑆 = 𝑉 \ {0} = 𝑆∗. □

In fact, the incompatibility observed in Proposition 2.5 can be

strengthened further: it holds for approximate JR and, in case of the

0-BSP, even for approximate minimum cost. We provide the details

in the full version of the paper [6]. However, if we replace cost min-

imality with Pareto optimality, the incompatibility no longer holds:

by applying Pareto improvements, we can transform a solution

providing JR into a Pareto-optimal solution providing JR.

Definition 2.6. Given an instance I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩, a solu-
tion 𝑆 is said to Pareto-dominate another solution 𝑆 ′ if 𝑐𝑖 (𝑆) ≤ 𝑐𝑖 (𝑆 ′)
for all 𝑖 ∈ 𝑁 and there exists an agent 𝑗 ∈ 𝑁 with 𝑐 𝑗 (𝑆) < 𝑐 𝑗 (𝑆 ′).
A solution 𝑆∗ is Pareto-optimal for I if it is not dominated by any

other solution.

Proposition 2.7. Let 𝛼 ∈ [0, 1]. Then every instance of 𝛼-BSP

that admits a solution providing JR also admits a solution that is

Pareto-optimal and provides JR.

Proof. Let 𝛼 ∈ [0, 1], and consider an instance of 𝛼-BSP that

admits a solution 𝑆 providing JR. Suppose that 𝑆 is not Pareto-

optimal. Then it is Pareto-dominated by another solution 𝑆1. We

claim that 𝑆1, too, provides JR. To see this, consider a subset of

agents 𝑀 ⊆ 𝑁 with |𝑀 | ≥ 2𝑛
𝑏

and a pair of bus stops 𝑇 ⊆ 𝑉 .

Since 𝑆 provides JR, there exists an agent 𝑖 ∈ 𝑀 with 𝑐𝑖 (𝑆) ≤ 𝑐𝑖 (𝑇 ).
Hence, 𝑐𝑖 (𝑆1) ≤ 𝑐𝑖 (𝑆) ≤ 𝑐𝑖 (𝑇 ), which establishes that 𝑆1 provides

JR. If 𝑆1 is not Pareto-optimal, there exists another solution 𝑆2 that

Pareto-dominates it, and our argument shows that 𝑆2 provides JR

as well. We can continue in this manner until we reach a Pareto-

optimal solution; this will happen after a finite number of steps, as

each step reduces the total cost. □

Proposition 2.7 extends to approximate JR solutions; the proof

remains the same. We note, however, that Proposition 2.7 does not

offer an efficient algorithm to find a Pareto-optimal solution that

provides JR, as it is not clear how to compute Pareto improvements

in polynomial time.

3 EFFICIENCY

In this section, we show that efficient solutions, i.e., solutions of

minimum total cost, can be computed in polynomial time. Our

algorithm extends to a more general version of our model, where

agents’ terminals need not be contained in 𝑉 .

Our algorithm is based on a dynamic program, which iteratively

considers adding new stops to the solution. Capturing our problem

by a dynamic program is challenging, because each agent’s cost

depends on the placement of two stops. The crucial observation

that enables us to circumvent this difficulty is that, to perform cost

updates in the dynamic program, it suffices to know the rightmost

stop in the current solution. This idea is formalized by Lemma 3.1.

All missing proofs can be found in the full version of the paper [6].

Lemma 3.1. Let 𝛼 ∈ [0, 1] and let I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ be an
instance of the 𝛼-BSP problem. Let 𝑆 ⊆ 𝑉 , and ℎ = max 𝑆 . Then for

each 𝑘 ∈ 𝑉 with 𝑘 > ℎ the quantity 𝑐 (𝑆) − 𝑐 (𝑆 ∪ {𝑘}) is a function
of ℎ and 𝑘 that can be computed in time 𝑂 (1).

Lemma 3.1 enables us to set up a two-dimensional dynamic

program for computing the minimum total cost of a solution to an

𝛼-BSP instance with a given number of stops.

Theorem 3.2. For 𝛼 ∈ [0, 1], we can compute a minimum-cost

solution for an instance of 𝛼-BSP in time 𝑂 (𝑛𝑚 +𝑚3).

Proof. Let 𝛼 ∈ [0, 1], and consider an instance I =

⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ of 𝛼-BSP where𝑉 = {𝑣1, . . . , 𝑣𝑚} with 𝑣1 ≤ 𝑣2 ≤
· · · ≤ 𝑣𝑚 , i.e., potential stops are sorted from left to right and 𝑣 𝑗 rep-

resents the 𝑗-th stop. We will assume 𝑏 ≤ 𝑚, as otherwise there is

an optimal-cost solution that builds a stop at each location. For a so-

lution 𝑆 withmax 𝑆 = 𝑣ℎ and 𝑘 > ℎ, let Δ(ℎ, 𝑘) := 𝑐 (𝑆) −𝑐 (𝑆∪{𝑣𝑘 })
denote the total reduction in the agents’ costs from adding stop

𝑣𝑘 to 𝑆 . By Lemma 3.1, we know that Δ(ℎ, 𝑘) only depends on 𝑣𝑘
and 𝑣ℎ , and can be computed in 𝑂 (1) time. Let us set up a dynamic

program dp[ℎ, 𝑐], where
• ℎ ∈ {0, 1, . . . ,𝑚} represents the rightmost stop that has been

added to the solution, where 0 means that no stop has been

added yet, and

• 𝑐 ∈ {0, . . . , 𝑏} represents the budget used so far.

Then, dp[ℎ, 𝑐] is the minimum total cost of a solution that selects

at most 𝑐 stops, with 𝑣ℎ being the rightmost selected stop.

We initialize with

(a) dp[0, 𝑐] = dp[1, 𝑐] = ∑
𝑖∈𝑁 (𝑟𝑖 − ℓ𝑖 ) for all 𝑐 ∈ {0, . . . , 𝑏},

(b) dp[ℎ, 0] = ∞ for all ℎ ∈ {1, . . . ,𝑚}.
Case (b) captures the impossible situation of selecting at least one

stop (ℎ > 0) while spending no budget. We prevent this case by

setting the total cost to ∞. As we assume 𝑏 ≤ 𝑚, in total the

initialization takes 𝑂 (𝑛𝑚) time.

For updating, we use the cost change function Δ. For ℎ ∈
{1, . . . ,𝑚}, and 𝑐 ∈ {1, . . . , 𝑏} we update as follows:

dp[ℎ, 𝑐] = min

ℎ′∈{0,...,ℎ−1}
dp[ℎ′, 𝑐 − 1] − Δ(ℎ′, ℎ) . (2)

That is, we consider the position of the stop ℎ′ that precedes ℎ
in the solution, and evaluate the cost reduction from adding ℎ to a

solution that ends with ℎ′. Clearly, the updates can be computed in

time 𝑂 (𝑚), using the update formulas provided by Lemma 3.1. As

we assume that 𝑏 ≤ 𝑚, our table has at most𝑚2
entries, and can be

filled in time 𝑂 (𝑚3). Hence, the total running time is 𝑂 (𝑛𝑚 +𝑚3).
It is not hard to see that our dynamic program is correct; we

provide a formal proof of correctness in the full version of the paper.

Hence, the minimum cost of a feasible solution for I is equal to

minℎ∈{0,...,𝑚} dp[ℎ,𝑏]. We can efficiently extract an explicit feasible

solution of minimum cost by standard techniques. □

We note that we can also assume that 𝑏 ≤ 2𝑛 (otherwise, we can

build a stop at each terminal), and hence the running time of our

algorithm can also be bounded as𝑂 (𝑛2 +𝑛𝑚2). However, we expect
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this bound to be less useful than the one stated in Theorem 3.2,

since in practical applications it is likely that𝑚 << 𝑛.

Notably, the computations in the dynamic program developed in

the proof of Theorem 3.2 are merely updates of the sums of costs

for all agents. This allows us to extend Theorem 3.2 to incorporate

further features that may be important for some applications.

First, the theorem extends to more general cost functions. Con-

sider a setting where the time to travel between two stops depends

on factors other than the distance. For instance, the bus route might

encompass intervals with different speed limits, or there may be

hilly or curvy roads, where the bus needs to slow down. Hence, the

travel costs need not be homogeneous. However, typically the travel

cost of a route only depends on the costs of its segments. To capture

this, we introduce the notion of separable travel costs, and formally

introduce the separable-cost BSP problem, which generalizes the

𝛼-BSP problem defined earlier in the paper.

A function 𝑑 : Q2 → Q is called separable if for all 𝑥 < 𝑦 < 𝑧 it

holds that 𝑑 (𝑥, 𝑧) = 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧). An instance I of separable-

cost BSP is given by a tuple ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ and separable cost

functions 𝑑𝑊 : 𝑉 × 𝑉 → Q and 𝑑𝐵
𝑖

: 𝑉 × 𝑉 → Q for all 𝑖 ∈ 𝑁

(where the superscripts refer to walking and taking the bus). The

agents’ costs are then defined as

𝑐I𝑖 (𝑆) := min

{
𝑑𝑊 (ℓ𝑖 , 𝑟𝑖 )
min𝑥,𝑦∈𝑆

[
𝑑𝑊 (ℓ𝑖 , 𝑥) + 𝑑𝐵 (𝑥,𝑦) + 𝑑𝑊 (𝑦, 𝑟𝑖 )

]
.

We can generalize Lemma 3.1 to separable-cost BSP by replacing

the costs for walking and taking the bus by the respective separable

cost functions in all update formulae. Note that the definition of

separable-cost BSP does not require that taking the bus is faster

than walking. Our computation can account for this, by allowing

the agents to walk rather than take the bus for segments where

walking is faster. With the generalized update formulae, we can run

the dynamic program from Theorem 3.2 and obtain the following

theorem.

Theorem 3.3. For separable-cost BSP, we can compute the mini-

mum cost in time 𝑂 (𝑛𝑚 +𝑚3).

As a second extension, we assume that there already is an existing

set of bus stops, but we have a budget to build 𝑏 additional stops.

An instance of 𝛼-BSP with existing bus stops consists of an instance

I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ of the base model together with a set 𝐸 ⊆ Q
of existing bus stops. The cost of a solution 𝑆 ⊆ 𝑉 for agent 𝑖 is

then computed as

𝑐I𝑖 (𝑆) := min

{
𝑑 (ℓ𝑖 , 𝑟𝑖 )
min𝑥,𝑦∈𝑆∪𝐸 [𝑑 (ℓ𝑖 , 𝑥) + 𝛼 · 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑟𝑖 )] .

This case can be solved by a simple modification of the dynamic

program in Theorem 3.2. Since we can still update a cell in time

𝑂 (𝑚), the running time is the same as in Theorem 3.2.

Theorem 3.4. For 𝛼-BSP with existing bus stops, we can compute

the minimum cost in time 𝑂 (𝑛𝑚 +𝑚3).

As a third extension, we consider the case where bus stops do not

have identical costs: indeed, construction costs may vary depending

on, e.g., ease of access. An instance of 𝛼-BSP with bus stop costs

consists of an instance I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ of the base model

together with a budget function 𝛾 : 𝑉 → N. A solution 𝑆 ⊆ 𝑉 is

feasible if

∑
𝑖∈𝑆 𝛾 (𝑖) ≤ 𝑏. Clearly, we can still apply the dynamic

program in Theorem 3.2. However, we can no longer assume that

𝑏 ≤ 𝑚. Hence, we obtain a running time of𝑂 (𝑛𝑚2 +𝑚3𝑏), which is

only pseudo-polynomial due to the dependency on 𝑏. If the bus stop

costs are represented in unary, the running time remains polyno-

mial. However, for bus stop costs represented in binary, we obtain

a computational hardness result, via a reduction from Knapsack.

Proposition 3.5. Let 𝛼 ∈ [0, 1). Then, the following decision

problem is NP-complete: given an instance I of 𝛼-BSP with bus stop

costs represented in binary and a rational number 𝑞 ∈ Q, decide if
there exists a feasible solution 𝑆 with 𝑐I (𝑆) ≤ 𝑞.

We conclude this section with a structural result regarding

minimum-cost solutions. Interestingly, as long as both terminals

of all agents belong to the set of potential bus stops, there is a

minimum-cost solution that places all stops at the agents’ terminals.

We remark that this is the only place in this section where the

assumption A(I) ⊆ 𝑉 plays a crucial role.

Proposition 3.6. For every 𝛼 ∈ [0, 1] and every instance I of 𝛼-

BSP there exists a minimum-cost feasible solution 𝑆∗ with 𝑆∗ ⊆ A(I).

An interesting consequence of Proposition 3.6 is that it enables

us to deal with yet another variant of the base model, where we

allow infinitely large sets of potential bus stops (e.g., intervals of Q).
Indeed, we can then transform an instance I by setting𝑉 := A(I)
and apply Theorem 3.2. In particular, this covers the case where

𝑉 = Q, which can be viewed as a continuous version of our model.

4 FAIRNESS

We now turn to the consideration of fairness. Our main contribution

is an algorithm that efficiently computes outcomes that provide JR

if 𝛼 = 0, i.e., if taking the bus has zero cost. Moreover, the solutions

computed by this algorithm lie in the 2-approximate core (and

the bound of 2 is tight). Besides these theoretical guarantees, we

establish that our algorithm has good empirical performance: in

more than 99.9% of our (synthetically generated) instances, the

algorithm finds an outcome in the core, even for 𝛼 > 0.

4.1 Theoretical Possibilities and Limitations

We first show that JR solutions exist if taking the bus has zero cost.

For this, we consider Algorithm 1. Its key idea is to order all termi-

nal points and select them iteratively from left to right whenever

we have passed sufficiently many agent terminals (counted with

multiplicities). This approach is similar to the CommitteeCore

algorithm by Pierczyński and Skowron [33], which is used to find

outcomes in the core of 1-dimensional multi-winner elections.

Given an instance I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ of 0-BSP, Algorithm 1

starts by sorting𝑉 = {𝑣1, . . . , 𝑣𝑚} so that 𝑣1 ≤ 𝑣2 ≤ · · · ≤ 𝑣𝑚 . Then,

for each 𝑗 ∈ [𝑚], the algorithm computes 𝑥 𝑗 as the number of agent

terminals at or to the left of 𝑣 𝑗 . Next, for 𝑘 ∈ [𝑏], it computes 𝑠𝑘

as the leftmost element 𝑣 𝑗 ∈ 𝑉 with 𝑥 𝑗 ≥ 𝑘
⌊
2𝑛
𝑏

⌋
; it then returns

𝑆 = {𝑠𝑘 : 𝑘 ∈ [𝑏]}. Since |𝑆 | ≤ 𝑏, 𝑆 is a feasible solution.

The proof of correctness of Algorithm 1 is based on the following

technical lemma.

Lemma 4.1. Let I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ be an instance of 0-BSP,

and let 𝑆 be a solution for I. Consider a coalition𝑀 ⊆ 𝑁 that prefers
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Algorithm 1 Fair solutions for 𝛼-BSP.

Input: Instance I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ of 𝛼-BSP
Output: A solution 𝑆

Sort 𝑉 = {𝑣1, . . . , 𝑣𝑚} so that 𝑣1 ≤ 𝑣2 ≤ · · · ≤ 𝑣𝑚
for 𝑗 = 1, . . . ,𝑚 do

𝑥 𝑗 ← |{𝑖 ∈ 𝑁 : ℓ𝑖 ≤ 𝑣 𝑗 }| + |{𝑖 ∈ 𝑁 : 𝑟𝑖 ≤ 𝑣 𝑗 }|
for 𝑘 = 1, . . . , 𝑏 do

𝑠𝑘 ← min{𝑣 𝑗 : 𝑥 𝑗 ≥ 𝑘
⌊
2𝑛
𝑏

⌋
}

𝑆 ← {𝑠𝑘 : 𝑘 ∈ [𝑏]}
return 𝑆

𝑇 ⊆ 𝑉 to 𝑆 , and an agent 𝑖 ∈ 𝑀 . Suppose that, when 𝑇 is built, 𝑖

walks from their left terminal ℓ𝑖 to ℓ
′ ∈ 𝑇 , then takes the bus from ℓ′

to 𝑟 ′ ∈ 𝑇 , and then walks from 𝑟 ′ to their right terminal 𝑟𝑖 . If there

exists an ℓ ∈ 𝑆 with ℓ𝑖 ≤ ℓ ≤ ℓ′ or ℓ′ ≤ ℓ ≤ ℓ𝑖 , then for every stop

𝑟 ∈ 𝑆 it holds that 𝑑 (ℓ, ℓ′) < 𝑑 (𝑟, 𝑟 ′) . Similarly, if there exists a stop

𝑟 ∈ 𝑆 with 𝑟𝑖 ≤ 𝑟 ≤ 𝑟 ′ or 𝑟 ′ ≤ 𝑟 ≤ 𝑟𝑖 , then for every stop ℓ ∈ 𝑆 it

holds that 𝑑 (ℓ, ℓ′) > 𝑑 (𝑟, 𝑟 ′) .

Proof. Assume that𝑀 , 𝑆 , 𝑇 , 𝑖 , ℓ′ and 𝑟 ′ are as in the statement

of the lemma and that there exists an ℓ ∈ 𝑆 between ℓ𝑖 and ℓ′. Fix
an 𝑟∗ in argmin𝑥∈𝑆 𝑑 (𝑟𝑖 , 𝑥). By assumption, we have 𝑐𝑖 (𝑇 ) < 𝑐𝑖 (𝑆).
Hence, for every 𝑟 ∈ 𝑆 , we conclude that

𝑑 (ℓ𝑖 , ℓ′) + 𝑑 (𝑟𝑖 , 𝑟 ′) < 𝑑 (ℓ𝑖 , ℓ) + 𝑑 (𝑟𝑖 , 𝑟∗) and hence

𝑑 (ℓ𝑖 , ℓ′) − 𝑑 (ℓ𝑖 , ℓ) < 𝑑 (𝑟𝑖 , 𝑟∗) − 𝑑 (𝑟𝑖 , 𝑟 ′) . (3)

Since ℓ lies between ℓ𝑖 and ℓ
′
, we have 𝑑 (ℓ, ℓ′) = 𝑑 (ℓ𝑖 , ℓ′) − 𝑑 (ℓ𝑖 , ℓ);

substituting this into (3), we obtain

𝑑 (ℓ, ℓ′) < 𝑑 (𝑟𝑖 , 𝑟∗) − 𝑑 (𝑟𝑖 , 𝑟 ′) ≤ 𝑑 (𝑟𝑖 , 𝑟 ) − 𝑑 (𝑟𝑖 , 𝑟 ′) ≤ 𝑑 (𝑟, 𝑟 ′),
where the first transition is by the choice of 𝑟∗ and the second

transition uses the triangle inequality. The proof for the second

statement of the lemma is analogous. □

Theorem 4.2. Algorithm 1 runs in polynomial time, and for 0-BSP

it computes feasible solutions that provide JR.

Proof. Clearly, Algorithm 1 runs in polynomial time. We claim

that the solution 𝑆 computed by Algorithm 1 provides JR.

Indeed, assume for contradiction that there exists a coalition

𝑀 ⊆ 𝑁 of size |𝑀 | ≥ 2 · 𝑛
𝑏
and a pair of stops𝑇 = {ℓ′, 𝑟 ′} ⊆ 𝑉 such

that 𝑐𝑖 (𝑇 ) < 𝑐𝑖 (𝑆) for all 𝑖 ∈ 𝑀 .

Let 𝐿 = {ℓ𝑖 : 𝑖 ∈ 𝑀}. Since there are at most

⌊
2𝑛
𝑏

⌋
terminals

between every two consecutive stops in 𝑆 , there exists an ℓ∗ ∈ 𝑆
such that at least one of the terminals in 𝐿 is before ℓ∗ or exactly at

ℓ∗, and at least one of the terminals in 𝐿 is after ℓ∗ or exactly at ℓ∗.
Hence, if ℓ∗ ≤ ℓ′, then there exists an agent 𝑖 ∈ 𝑀 with ℓ𝑖 ≤ ℓ∗ ≤ ℓ′

and if ℓ′ ≤ ℓ∗, then there exists an agent 𝑖 ∈ 𝑀 with ℓ′ ≤ ℓ∗ ≤ ℓ𝑖 .

By Lemma 4.1 for every 𝑟 ∈ 𝑆 we have 𝑑 (ℓ∗, ℓ′) < 𝑑 (𝑟, 𝑟 ′).
By a similar argument, there exists an agent 𝑗 ∈ 𝑀 and a stop

𝑟∗ ∈ 𝑆 where 𝑟 𝑗 ≤ 𝑟∗ ≤ 𝑟 ′ or 𝑟 ′ ≤ 𝑟∗ ≤ 𝑟 𝑗 . By Lemma 4.1 for every

ℓ ∈ 𝑆 we have 𝑑 (𝑟∗, 𝑟 ′) < 𝑑 (ℓ, ℓ′). Setting 𝑟 = 𝑟∗ and ℓ = ℓ∗, we
obtain a contradiction. □

Example 4.3. Consider the execution of Algorithm 1 on the in-

stance from Example 2.4. There, we had 𝑉 = {0, 1, 4, 7, 10, 13, 15},
leading to the values (𝑥 𝑗 )7𝑗=1 = (2, 6, 7, 8, 9, 10, 12). This leads

to (𝑠𝑘 )6𝑘=1 = (0, 1, 1, 7, 13, 15). Hence, Algorithm 1 returns 𝑆 =

{0, 1, 7, 13, 15} for this instance. ◁

The example shows that, while Algorithm 1 always returns a

feasible solution that provides JR, the obtained solution may fail

to exhaust the budget. In such cases, having achieved JR via Al-

gorithm 1, we can distribute the remaining budget to accomplish

other goals. For instance, as per Theorem 3.4, we can extend the

solution to lower the total cost as much as possible. Note that, after

we add stops, the solution continues to provide JR.

A natural follow-up question is whether Theorem 4.2 can be

extended to arbitrary 𝛼 ∈ (0, 1). Unfortunately, our next result
shows that this is not the case.

Proposition 4.4. Let 𝛼 ∈ (0, 1). Then, for 𝛼-BSP, Algorithm 1

may return a solution that does not provide JR.

We can show further fairness guarantees for Algorithm 1, namely

that it computes solutions in the 2-core. However, the approxima-

tion guarantee of 2 is tight.

Theorem 4.5. Let 𝛼 ∈ [0, 1). Then, for 𝛼-BSP, Algorithm 1 com-

putes solutions in the 2-core. However, for each 0 < 𝜖 ≤ 1, it may

output solutions that are not in the (2 − 𝜖)-core.

Proof. Let 𝛼 ∈ [0, 1). We start by proving that the out-

put of Algorithm 1 is in the 2-core. Consider an instance I =

⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ and a solution 𝑆 computed by Algorithm 1 on I.
Assume for contradiction that there is a set of agents𝑀 ⊆ 𝑁 and a

set of stops 𝑇 ⊆ 𝑉 with |𝑇 | ≤ 𝑏
2𝑛 · |𝑀 | such that 𝑐𝑖 (𝑇 ) < 𝑐𝑖 (𝑆) for

all 𝑖 ∈ 𝑀 .

For each 𝑡 ∈ 𝑇 , define ℓ𝑡 := max({𝑠 ∈ 𝑆 : 𝑠 ≤ 𝑡} ∪ {−∞}) and
𝑟𝑡 := min({𝑠 ∈ 𝑆 : 𝑠 ≥ 𝑡} ∪ {∞}). These are the closest bus stops
in 𝑆 to the left and to the right of 𝑡 ; if there is no such stop, we set

this variable to −∞ or∞, respectively. Let 𝐶𝑡 := {𝑖 ∈ 𝑁 : ℓ𝑡 < ℓ𝑖 <

𝑟𝑡 or ℓ𝑡 < 𝑟𝑖 < 𝑟𝑡 }, i.e.,𝐶𝑡 is the set of agents that have at least one
terminal strictly between ℓ𝑡 and 𝑟𝑡 . By design of Algorithm 1, we

have

|𝐶𝑡 | ≤
2𝑛

𝑏
− 1. (4)

We claim that for every 𝑖 ∈ 𝑀 there exists 𝑡 ∈ 𝑇 with 𝑖 ∈ 𝐶𝑡 .

Indeed, since 𝑐𝑖 (𝑇 ) < 𝑐𝑖 (𝑆), we know that the cost of 𝑖 with respect

to 𝑇 comes from a route in which they take the bus, i.e., there exist

stops 𝑡1, 𝑡2 ∈ 𝑇 such that 𝑖 walks from ℓ𝑖 to 𝑡1, takes the bus to 𝑡2,

and then walks to 𝑟𝑖 . If 𝑖 ∉ 𝐶𝑡1 ∪𝐶𝑡2 , then there exist 𝑠1, 𝑠2 ∈ 𝑆 such

that 𝑠1 is between ℓ𝑖 and 𝑡1, and 𝑠2 is between 𝑡2 and 𝑟𝑖 . It is easy

to see that 𝑐𝑖 (𝑇 ) = 𝑐𝑖 ({𝑡1, 𝑡2}) ≥ 𝑐𝑖 ({𝑠1, 𝑠2}) ≥ 𝑐𝑖 (𝑆), contradicting
the cost improvement of 𝑖 according to 𝑇 . Hence, it follows that

𝑖 ∈ 𝐶𝑡1 ∪𝐶𝑡2 .
We conclude that

|𝑀 | ≤
�����⋃
𝑡 ∈𝑇

𝐶𝑡

����� ≤∑︁
𝑡 ∈𝑇
|𝐶𝑡 |

Eq. (4)

≤ |𝑇 |
(
2𝑛

𝑏
− 1

)
< |𝑀 |.

This is a contradiction, and hence, 𝑆 is in the 2-core.

To prove that the bound is tight, let 0 < 𝜖 ≤ 1. We define an

instance that is parameterized by an integer 𝑘 . First, observe that
𝑘+1
2𝑘
(2 − 𝜖) converges to 1 − 𝜖

2
as 𝑘 tends to infinity. Hence, we can

choose 𝑘 large enough so that
𝑘+1
2𝑘
(2− 𝜖) ≤ 1− 𝜖

4
. Moreover, fix an

integer 𝑥 > 4

𝜖 . We define an instance with 𝑏 = 2𝑘 and 𝑘 groups of

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

432



agents 𝑁 1, . . . , 𝑁𝑘
of size 𝑥 each, so 𝑛 = 𝑘𝑥 . We want the agents’

left and right terminals to be separated by a sufficiently long part

of the path with no agent terminals. To this end, for each 𝑗 ∈ [𝑘],
we let ℓ 𝑗 = 𝑗 , 𝑟 𝑗 = 2𝑘 + (2 𝑗 − 1)𝑘 , and set

• ℓ𝑖 := ℓ 𝑗 for each 𝑖 ∈ 𝑁 𝑗
;

• 𝑟𝑖 := 𝑟 𝑗 for 𝑥−1 agents in𝑁 𝑗
and 𝑟𝑖 = 𝑟 𝑗+𝑘 for the remaining

agent in 𝑁 𝑗
.

An illustration is given in Figure 2. For 𝑉 = ∪𝑖∈𝑁 {ℓ𝑖 , 𝑟𝑖 }, the algo-
rithm outputs the 2𝑘 bus stops in 𝑆 = [𝑘] ∪ {2𝑘 + 2 𝑗𝑘 : 𝑗 ∈ [𝑘]}.

Now, consider the coalition 𝑀 consisting of all agents except

those whose right terminals are at 𝑟 𝑗 + 𝑘 , 𝑗 ∈ [𝑘]. We have

|𝑀 | = 𝑛 − 𝑘 = 𝑘 (𝑥 − 1) > 𝑘

(
𝑥 − 𝜖

4

𝑥

)
=

(
1 − 𝜖

4

)
𝑘𝑥

≥ 𝑘 + 1
2𝑘
(2 − 𝜖) 𝑘𝑥 = (𝑘 + 1) (2 − 𝜖) 𝑛

𝑏
.

Here, the first inequality holds by our choice of 𝑥 , and the second

inequality holds by our choice of 𝑘 . Consider the set of bus stops

𝑇 = {𝑘} ∪ {2𝑘 + (2 𝑗 − 1)𝑘 : 𝑗 ∈ [𝑘]},
with |𝑇 | = 𝑘 + 1. To show that 𝑀 is a blocking coalition for the

(2 − 𝜖)-core, it remains to argue that for every agent 𝑖 ∈ 𝑀 it holds

that 𝑐𝑖 (𝑇 ) < 𝑐𝑖 (𝑆). To see this, fix a 𝑗 ∈ [𝑘] and 𝑖 ∈ 𝑀 ∩ 𝑁 𝑗
. Then,

given solution 𝑇 , 𝑖 can walk to 𝑘 and take the bus all the way to 𝑟𝑖 .

However, in 𝑆 , 𝑖 can board the bus at ℓ𝑖 , but then she needs to walk

at least 𝑘 to her destination. Since the overall distance she travels in

the latter case is at least as large as in the former case, and involves

strictly more walking (𝑘 instead of 𝑘 − 𝑗 ), agent 𝑖 prefers𝑇 to 𝑆 . □

We note that 𝛼-BSP can be shown to be a special case of commit-

tee selection with monotonic preferences and uniform costs. Hence,

the results of Jiang et al. [22] (Theorem 1) imply that the 16-core of

𝛼-BSP is always non-empty. However, Theorem 4.5 offers a much

better approximation guarantee.

It remains an open problem how to construct solutions in the

core; in fact, we do not even know if the core is always non-empty.

This seems to be a challenging question. For instance, by Proposi-

tion 2.5, the cost-minimal solution does not even provide JR. Sim-

ilarly, the solution that selects the most popular terminal points

may not provide JR (an example is given in the full version [6]).

Finally, we observe that solutions that provide strong JR (and

therefore lie in the strong core) need not exist.

Proposition 4.6. For every 𝛼 ∈ [0, 1) there exists an instance of

𝛼-BSP such that no feasible solution provides strong JR.

Proof. Consider an instance I = ⟨𝑁,𝑉 ,𝑏, (𝜃𝑖 )𝑖∈𝑁 ⟩ with agent

set 𝑁 = [8] and budget 𝑏 = 4. We set 𝑉 = [16], and for each 𝑖 ∈ 𝑁
we set ℓ𝑖 = 2𝑖 − 1 and 𝑟𝑖 = 2𝑖 . Hence, we have an instance with 8

agents, where all agents have different terminals.

Then, any feasible solution 𝑆 has an empty intersection with the

set of terminals of at least 4 agents. Hence, there exists a set𝑀 ⊆ 𝑁

with |𝑀 | ≥ 4 such that 𝑐𝑖 (𝑆) = 1 for all 𝑖 ∈ 𝑀 , i.e., no agent in 𝑀

can do any better than to walk. Note that |𝑀 | ≥ 2𝑛
𝑏
. Hence, the

agents in𝑀 are entitled to two bus stops.

Now, let 𝑖 ∈ 𝑀 and consider 𝑇 = {ℓ𝑖 , 𝑟𝑖 }. Then 𝑐𝑖 (𝑇 ) = 𝛼 < 1 =

𝑐𝑖 (𝑆), and for 𝑗 ∈ 𝑀 \{𝑖} it holds that 𝑐 𝑗 (𝑇 ) = 1 = 𝑐 𝑗 (𝑆). Hence,𝑇 is

strictly better for agent 𝑖 and at least as good for all other members

of𝑀 . Therefore, 𝑆 does not provide strong JR. □

4.2 Computation of Outcomes in the Core on

Synthetic Data

While it remains open whether the core of 𝛼-BSP is always non-

empty, our simulations indicate that Algorithm 1 can frequently

find outcomes in the core. This is despite the fact that, according to

Proposition 4.4 and Theorem 4.5, in the worst case this algorithm

may fail to find JR outcomes for 𝛼 ∈ (0, 1) and outcomes in the

𝛽-core for 𝛽 < 2. All computations were performed using an Apple

M2 CPU with 24 GB of RAM.

4.2.1 Experimental Setup. For our experiments, we consider the

following parameter ranges:

• Number of agents 𝑛 ∈ {5, . . . , 25}.
• Number of bus stops𝑚 ∈ {5, . . . , 15}.
• Budget 𝑏 ∈ {3, . . . ,𝑚 − 1}, i.e., we consider all budgets that
facilitate taking the bus at all and do not enable building all

possible bus stops.

• Cost parameter 𝛼 ∈ {0, 0.1, . . . , 0.9}.
For each combination, we generated 400 random instances.

Generating Random Instances. Our set of bus stops is a subset

of the integers between 1 and 100. From this range, we choose𝑚

potential locations for bus stops uniformly at random. Moreover,

we determine the types of agents by independently selecting two

terminals from the set of possible stops uniformly at random.

Algorithmic Benchmark. We measure the frequency of instances

on which Algorithm 1 computes solutions that provide JR/are in

the core. For comparison, we benchmark our algorithm against

the naive algorithm, which selects the stops as if the agents were

distributed uniformly on the line. More precisely, if 𝑉 is the set

of possible stops, the naive algorithm ignores the actual agents’

types and assumes instead that for each point 𝑝 ∈ {1, . . . , 100},
𝑛/50 agents have one of their endpoints at 𝑝 and report a point in

argmin𝑑 (𝑝,𝑉 ) as the respective terminal; it then runs Algorithm 1

under this assumption on the agents’ types. In other words, Algo-

rithm 1 can be seen as a weighted version of the naive algorithm,

which takes actual user demands into account. In the full version

of the paper, we consider a second benchmark algorithm, which is

based on the idea of selecting the most demanded bus stops.

Verification of Fair Solutions. An integral part of performing sim-

ulations is an efficient algorithm for verifying whether a given

solution provides JR or is in the core. While JR can be checked by a

simple polynomial-time algorithm (by checking if enough agents

benefit from using each pair of stops), we set up an integer program

to verify whether a solution is in the core. The theory for this part

of the simulations is described in the full version of the paper [6].

4.2.2 Experimental Results. The primary goal of our experiments

is to measure the performance of Algorithm 1 in terms of achieving

outcomes in the core or providing JR beyond the guarantee of

Theorem 4.2. Figure 3 shows an aggregated view of our results. We

see that, for a fixed 𝛼 , Algorithm 1 computes a solution in the core in

more than 99.9% of the cases. Even for the parameter combinations

with the highest frequency of fairness violations, the failure rate

of Algorithm 1 with respect to computing solutions in the core

does not exceed 3%. Figure 4 gives a glimpse at a more nuanced
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position

terminals

1 𝑘. . .
3𝑘 4𝑘 5𝑘 (2 + 2𝑘)𝑘. . .

ℓ1 ℓ𝑘. . . 𝑟1 𝑟1 + 𝑘 𝑟2 𝑟𝑘 + 𝑘. . .

Figure 2: Algorithm 1 fails to output solutions in the (2 − 𝜖)-core for 𝜖 ∈ (0, 1].
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Alg. 1 not in Core
Alg. 1 not JR

Figure 3: Aggregated frequency of fairness violations of the

solutions computed by Algorithm 1 and the naive algorithm

along with the standard error. The 𝑥-axis shows our range for

the cost parameter 𝛼 and the 𝑦-axis shows the percentage of

the instances in which the desired property is not satisfied.
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Figure 4: A heat map showing the frequency of core violations

(as a percentage, i.e., 0.05 means 0.05%) of the solutions com-

puted by Algorithm 1 for pairs of𝑚 and 𝑏 in instances of 0-BSP.

Each cell is averaged over all values of 𝑛.

distribution of the failures of computing solutions in the core. We

defer a more detailed analysis to the full version of the paper. We

remark that the upper left triangle of the figure cannot contain

any core violations because then the budget exceeds the number

of stops. One trend that can be observed from Figure 4 and that is

confirmed in our analysis for any fixed number of agents is that

the frequency of core violations is the highest for a comparatively

high number of potential bus stops and a smaller budget.

Another interesting observation is that, for a significant fraction

of the instances, if the solution computed by Algorithm 1 is not in

the core, it fails JR as well; indeed, this fraction tends to increase as

the cost parameter 𝛼 increases. Moreover, Algorithm 1 performs

much better than the naive algorithm. On average it performs up to

230.2 better for smaller values of 𝛼 and still 83.7 times better for 𝛼 =

0.9. A detailed comparison of the performance of the two algorithms

is provided in the full version of the paper [6]. Our interpretation of

this finding is that, while placing bus stops uniformly is a simple and

appealing approach, taking into account the actual user demands

results in much fairer solutions.

5 CONCLUSION

We proposed a stylized model for planning a bus route. Our model

can capture efficiency in terms of travel costs as well as fairness

in terms of proportional representation of the agents. We have

developed a dynamic program that minimizes the total travel cost

for the agents. This approach turned out to be extremely versatile, in

that it also applies to many variants of the base model. Concerning

fairness, our main contribution is an algorithm that constructs JR

solutions under the assumption that taking the bus has no cost.

This algorithm is also a 2-approximation for the core.

Our work suggests two natural avenues for further research.

First, it remains open how to compute JR solutions for instances

of 𝛼-BSP where 𝛼 ≠ 0; indeed, we do not even know if such solu-

tions always exist. An even harder question is whether the core is

always non-empty. This resembles the situation in approval-based

committee voting, where the same question is famously open [see,

e.g., 26]. Another promising direction is to extend our model to

more complex topologies. For instance, one can consider the setting

where the set of potential stops (and terminals) is a subset of Q2

or the vertex set of a (planar) graph. Further ahead, an important

research challenge is to develop a richer framework to reason about

fairness in more realistic models of public transport.
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